跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李韋勳
研究生(外文):Wei-Shun Li
論文名稱:金/二氧化鈦奈米材料的製備與應用製程研究
論文名稱(外文):The Preparation and Application of Au/TiO2 Nanoparticles
指導教授:蘇昭瑾
口試委員:余琬琴李文仁
口試日期:2011-07-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:64
中文關鍵詞:四丁基氧化鈦四氯金酸二氧化鈦奈米金觸媒聚乙烯/聚酯不織布聚酯/聚丙烯不織布壓吸機
外文關鍵詞:titanium dioxidenano-gold catalystpolyethylene/polyester non-wovenpolyester/polypropylene non-wovenpressure suction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米二氧化鈦在織品上的應用廣泛。本篇論文主要分為兩個部分,第一部分是製備附著二氧化鈦奈米材料的纖維。以四丁基鈦和冰醋酸為前驅物,利用水熱法製成二氧化鈦溶液,將纖維基材浸漬於二氧化鈦溶液中,經壓吸機壓吸後烘乾將二氧化鈦均勻的分散附著於各種纖維基材上。經X-射線繞射儀(XRD)及掃描式電子顯微鏡(SEM)證實纖維基材上有銳鈦礦相二氧化鈦的吸附。
第二部分主要研究使用四氯金酸當作金的前驅物,與水熱法製備所得二氧化鈦及商業型DP25作為觸媒載體,利用光還原法製備金/二氧化鈦奈米觸媒。由TEM穿透式電子顯微鏡得知在pH值10時還原在銳鈦礦相二氧化鈦上的奈米金粒徑為5~ 6 nm (銳鈦礦相二氧化鈦粒徑為15~20 nm),而還原在DP25二氧化鈦上的奈米金粒徑為3~5 nm (DP25二氧化鈦粒徑為30~50 nm)。這兩種金/二氧化鈦奈米材料經過工業用的分散劑及潤濕劑配合超音波振盪,再經壓吸法後可成功將金/二氧化鈦均勻的分散附著於聚乙烯/聚酯不織布和聚酯/聚丙烯不織布上。



Nano titanium dioxide (TiO2) is widely used on the textile materials. This thesis is divided into two parts. The first part is to deposite home-made TiO2 nanoparticles on fabric substrates. A TiO2 sol was prepared by hydrothermal method using titanium (IV) n-butoxide as the precursor of titanium. Fabric substrates including PP, PET/PP, PET/PAN, and Nylon were impregnated in the TiO2 sol followed by pressure-suction process to uniformly disperse TiO2 onto the fabric substrates. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed adsorption of anatase TiO2 on fabric substrates.
The second part of this work is to synthesize Au-TiO2 nanoparticles by photoreduction method using HAuCl4 as Au precursor, and commercial DP25 TiO2 and home-made anatase TiO2 as catalyst subatrates. Transmission electron microscopy (TEM) showed that at pH value of 10, the gold nanoparticles with size of 5 ~ 6 nm can be reduced on the anatase TiO2 (size 15 ~ 20 nm), while the gold nanoparticles with size of 3 ~ 5 nm can be reduced on the anatase titanium dioxide (size 30 ~ 50 nm). The Au-TiO2 samples mixing with industrial grade dispersant and wetting agent in conjunction with ultrasonic oscillation, and then used the pressure-suction method to successfully dispersed Au-TiO2 uniformly onto the polyethylene/polyester non-woven and polyester/polypropylene non-woven subtrates.


中文摘要 I
ABSTRACT Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
第一部分 二氧化鈦溶液製備暨纖維基材壓吸 1
第一章 緒論 1
1.1 前言 1
1.2研究動機 2
第二章 文獻回顧 4
2.1二氧化鈦簡介 4
2.2二氧化鈦光催化原理 6
第三章 實驗方法與性質分析 9
3.1銳鈦礦相二氧化鈦的製備 9
3.2影響二氧化鈦光催化活性之因素 12
3.3實驗藥品 15
3.4實驗儀器 15
3.5 奈米二氧化鈦溶液製備暨纖維基材壓吸 16
3.5.1熱法製備銳鈦礦相奈米二氧化鈦 16
3.5.2布樣壓吸試驗 17
3.5.3 X光繞射儀(XRD)分析 18
3.5.4掃瞄式電子顯微鏡(SEM)分析 21
第四章 結果與討論 22
4.1二氧化鈦溶液用於纖維基材壓吸之比較 22
4.2 (SEM)觀察二氧化鈦溶液用於纖維基材壓吸之比較 36
第五章 結論 38
第二部分 金二氧化鈦製備暨纖維基材壓吸 39
第一章 緒論 39
1.1 前言 39
1.2研究動機 39
第二章 文獻回顧 40
2.1奈米金觸媒簡介 40
2.2影響金觸媒催化因素 40
2.2.1 pH值對金觸媒的影響 40
2.2.2氯離子的影響 42
2.2.3載體的影響 42
2.3金觸媒催化一氧化碳反應機制 43
第三章 實驗方法與性質分析 44
3.1實驗藥品 44
3.2實驗儀器 45
3.3儀器簡介 45
3.3.1 光催化槽 45
3.3.2穿透式電子顯微鏡(TEM) 46
3.3.3X光螢光分析儀(XRF) 48
第四章 實驗步驟 49
4.1 光沉積法製備金/二氧化鈦 49
4.2 金/二氧化鈦(DP25)壓吸於纖維基材 50
第五章 結果與討論 52
5.1 X光繞射儀(XRD)分析 52
5.2穿透式電子顯微鏡(TEM)分析 53
5.3掃瞄式電子顯微鏡(SEM)分析 57
5.4 X光螢光分析儀(XRF)分析 60
第六章 結論 61
參考文獻 62


[1]A. Sclafani, J. M. Herrmann, “Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions”, J. Phys. Chem., 100 (1996) 13655.
[2]H. Lachheb, E. Puzenat, A. Houas, H. Ksibi, E. Elaloui, “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania,” Appl. Catal. B: Environmental 39 (2002) 75.
[3] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, “Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol,” J. Phys. Chem. B, 106 (2002) 10674.
[4] J. A. Navio, G. Colon, M. Trillas, J. Peral, X. Domenech, J.J. Testa, J. Padron, D.Rodriguez, M.I. Litter, “Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method,” Appl.Catal. B. Environmental, 16 (1998) 187.
[5]I. H. Tseng, W. C. Chang, C. S. Wu, “Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts,” Appl.Catal .B. Environmental 37 (2002) 37.
[6]L. B. Khalil, W. E. Mourad, M. W. Rophael, “Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination,” Appl.Catal. B. Environmental 17 (1998) 267.
[7]J. H. Lee, M. Kang, S. J. Choung, K. Ogino, S. Miyata, M.S. Kim, J.Y. Park, J.B. Kim, “The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia,” Water Res. 38 (2004) 713.
[8] Y. Qian, Q. Chen, Z. Chen, C. Fan, G. Zhou, “Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti,” J. Mater. Chem. 3 (1993) 203.
[9]U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48 (2003) 53.
[10]M. Grätzel, “Photoelectrochemical cells,” Nature 414 (2001) 338.
[11]張晶, 楊健, “光觸媒圖解, ” 日刊工業新聞社 2003.
[12]陳陵援, “半導體光觸媒, ” 科學發展 400 (2000) 57.
[13]H. M. Lee, C. S. Kim, “Effects of oxygen vacancies on the ferromagnetism in Fe-doped anatase TiO2,” J. Magn. Magn. Mater. 310 (2007) 2099.
[14]A. Sclafani, L. Palmisano, M. Schiavello, “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion,”J. Phys. Chem. 94 (1990) 829.
[15]A. L. Linsebigler, G. Lu, J. T. Yates, Jr, “The adsorption and photodesorption of oxygen on the TiO2 (OH) surface,” J. Chem. Phys. 102 (1995) 4657.
[16]王昱琨,碩士論文, “FTIR偵測二氧化鈦與有毒分子的氣-固相反應,”國立臺北科技大學 (2010).
[17] 彭惠美,碩士論文, “水熱法利用雙乙醯丙酮螯合鈦為前驅物製備奈米二氧化鈦及性質分析,” 國立臺北科技大學 (2005).
[18]J. Yang, S. Mei, J. M. F. Ferreiva, “Hydrothermal synthesis of well-dispersed TiO2 nano-crystals,” J. Mater. Res. 17 (2002) 2197.
[19]J. Yang, S.Mei, J. M. F. Ferreiva, “Hydrothermal synthesis of nano-TiO2 powders: influence of peptisation and peptising agents on the crystalline phases and phase transitions,” J. Am. Ceram. Soc. 83 (2000) 1361.
[20]H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, S.Yanagida, “Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2,” J. Mater. Chem. 11 (2001) 1694.
[21]R. I. Walton, “Subcritical solvothermal synthesis of condensed inorganic materials,” Chem. Soc. Rev. 31 (2002) 230.
[22]M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates,” J. Phys. Chem , 91 (1987) 4305.
[23]D. Farin, J. Kiwi, and D. Avnir, J. Phys. Chem. 93. (1989) 4305.
[24]李秋煌, “生活的神燈-觸媒,” 工研院,科學發展 370 (2003) 29.
[25] G. J. Hutchings, “Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts,” J. Catal. 96 (1985) 292.
[26]M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” J. Catal. 115 (1989) 301.
[27]F. Moreau, G. C. Bond, A. O. Taylor, “Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents,” J. Catal. 231 (2005) 105.
[28]H.-S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung, M. C. Kung, “Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts,” J. Catal. 210 (2002) 375.
[29]Y.-M. Kang, B.-Z. Wan, “Gold and iron supported on Y-type zeolite for carbon monoxide oxidation,” Catal. Today 35 (1997) 379.
[30] M. A. Bollinger, M. A. Vannice, “A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2, catalysts,” Appl. Catal. B 8 (1996) 417.
[31] G. Srinivas, J. Wright, C. S. Bai, R. Cook, “Studies in Surface Science and Catalysis,” (1996) 427.
[32]M. Haruta, “Novel catalysis of gold deposited on metal oxides,” Catal. Surv. Jpn. 1 (1997) 61.
[33] L.-H. Chang, Y.-L. Yeh, Y.-W. Chen, “Preferential oxidation of CO in hydrogen stream over nano-gold catalysts prepared by photodeposition method,” Int. J. Hydrogen Energy 33 (2008) 1965.
[34] Y.-F. Yang, P. Sangeetha, Y.-W. Chen, “Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream,” Int. J. Hydrogen Energy 34 (2009) 8912.
[35] W. Yan, B. Chen, S. M. Mahurin, V. Schwartz, D. R. Mullins, A. R. Lupini, S. J. Pennycook, S. Dai, S.H. Overbury, “Preparation and comparison of supported gold nanocatalysts on Anatase, Brookite, Rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO,” J. Phys. Chem. B 109 (2005) 10676.
[36]Y. Denkwitz, M. Makosch, J. Geserick, U. Hormann, S. Selve, U. Kaiser, N. Husing, R. J. Behm, “Influence of the crystalline phase and surface area of the TiO2 support on the CO oxidation activity of mesoporous Au/TiO2 catalysts,” Appl. Catal. B 91 (2009) 470.
[37]M. Valden, X. Lai, D. W. Goodman, “Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetalic properties,” Science 281 (1998) 1647.
[38] 呂信緯,碩士論文, “微波-水熱法製備二氧化鈦在染料敏化太陽能電池之應用
,” 國立臺北科技大學 (2010).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top