跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林詠倫
研究生(外文):Yung-Lun Lin
論文名稱:控制奈米金粒子表面電漿共振特性並應用於螢光增強之研究
論文名稱(外文):Controllable Surface Plasmon Resonance in Gold Nanocomposites Enhanced Photoluminescence
指導教授:張淑美張淑美引用關係
口試委員:鄭榮安蘇昭瑾
口試日期:2011-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:56
中文關鍵詞:奈米金粒子表面電漿共振介面活性劑植晶法螢光增益
外文關鍵詞:gold nanoparticlessurface Plasmon resonancesurfactantseed growthphotoluminescence enhancement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主旨為利用植晶法製備出不同尺寸大小的奈米金粒子,以及利用置換法合成出不同保護劑包覆的奈米金粒子,並探討其尺寸大小與環境介電值對表面電漿共振吸收波長的影響。接著將奈米金粒子混摻在PEDOT:PSS中製作PL元件,探討與發光層間的能量轉移特性。
第一部份利用植晶法將小尺寸的奈米粒子與成長液(含有保護劑Sodium 4-dodecylbenzenesulfonate及前趨物離子溶液)混合,加入還原劑,將離子還原成原子,還原出的原子會與小尺寸的奈米粒子堆積,形成較大的奈米粒子。第二部分則利用置換法,將以檸檬酸鈉保護單一尺寸的奈米粒子,加入不同的介面活性劑,製換奈米粒子表面的保護層,而改變奈米粒子表面的介電環境,藉著改變介電環境,是否影響到奈米金粒子的表面電漿共振吸收波長。
最後,再將不同保護層的奈米金粒子混摻到PEDOT:PSS中,製作螢光測量試片,藉由奈米粒子在不同的表面電漿共振波長對應發光材料的發光波長是否有增強其螢光效益。


In this study, we altered the particles size and the dielectric surfactants to modulate surface plasmon resonance (SPR) optical properties, by utilizing the seeding growth method and ligand exchange reaction in aqueous solution. We studied the energy transfer in SPR coupling between the emission layer of conjugated polymer and gold nanoparticles which was blend into polymeric matrix (PEDOT:PSS) in a sandwiched structure. As a result, the spectral closely matched between the emission spectral of conjugated polymer and the surface plasmon band of gold nanoparticles to obtain a three-fold enhancement of light emission.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論及文獻回顧 1
1-1 前言 1
1-2 奈米材料之合成 3
1-3 奈米金粒子的製備 4
1-4 表面電漿共振效應 6
1-4-1 尺寸大小對於表面電漿共振影響 9
1-4-2 環境介電質對於表面電漿共振影響 11
1-5 金屬奈米粒子增強螢光 15
1-6 動機 18
第二章 尺寸大小及表面介電環境對於奈米金粒子表面電漿共振吸收的
影響 19
2-1 實驗藥品與儀器 19
2-1-1 藥品 19
2-1-2 儀器 20
2-2 實驗步驟 21
2-2-1 製備不同粒徑大小的奈米金粒子 21
2-2-1-1 製備奈米金核 21
2-2-1-2 製備四氯金酸成長溶液 22
2-2-1-3 製備不同粒徑大小的奈米金粒子 22
2-2-2 奈米金粒子表面置換不同介面活性劑 22
2-2-2-1 製備奈米金核水溶液 23
2-2-2-2 奈米金粒子表面製換不同保護劑 23
2-3 結果與討論 23
2-3-1 奈米金粒子合成機制探討 23
2-3-1-1 不同尺寸的奈米金粒子 23
2-3-1-2 製備不同介面活性劑包覆的奈米金粒子 26
2-3-2奈米金粒子特性鑑定 27
2-3-2-1不同尺寸的奈米金粒子 27
2-3-2-2 不同介面活性劑包覆的奈米金粒子 34
第三章 奈米金粒子增強螢光效益 40
3-1 實驗藥品與儀器 40
3-1-1 藥品 40
3-1-2 儀器 41
3-2 實驗步驟 42
3-3 結果與討論 43
第四章 結論 50
參考文獻 51


1.http://www.forumancientcoins.com/numiswiki/view.asp?key=cage%20cup.
2.Faraday, M., Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. London, 1857. 147: p. 145.
3.G., M., "Contributions to the optics of turbid media, particularly of colloidal metal solutions,"Ann. Phys., vol. 25, 1908, pp. 377.
4.Cao, Y.W.C., R.C. Jin, and C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, vol. 297, 2002, pp. 1536-1540.
5.J. P. Kottmann, " Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B, vol. 64, 2001, pp. 235402.
6.林鴻明、林中魁, 奈米科技應用研究與展望. 工業材料, 90 年 11 月. 179: p. 84-91.
7.Cariati, F.N., L., " Trianionoeptakis(triarylphosphine)undecagold cluster compounds," Inorg. Chim. Acta., vol 5, 1971, pp. 172.
8.Bartleet, P.A.B., B. A.; Singer, S. I, " Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems, " J. Am. Chem. Soc., vol. 100, 1978, pp. 5085.
9.Woehrle, C.S.M., M. V.; Whitesides, G. M. "Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions," J. Phys. Chem. B, vol.106, 2002, pp. 9979.
10.Schmid, G., ; Pfeil, R.; Boese, R.; Sandermann, F.; Meyer, S.; Calis, G. H. M.; and J.W.A. van der Welden, " Au55[P(C6H5)3]12Cl6 a gold cluster of exceptional size," Chem. Ber., vol. 114, 1981, pp. 3634.
11.Weare, W.W.R., S. M.; Warner, M. G..; Hutchison, J. E. , " Improved Synthesis of Small (dCORE ≈ 1.5 nm) Phosphine-Stabilized Gold Nanoparticles, " J. Am. Chem. Soc., vol. 122, 2000, pp. 12890.
12.Brust, M.W., M.; Bethell, D.; Schiffrin, D. J.; and R. Whyman, " Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System," J. Chem. Soc., Chem. Commun., 1994: p. 801.
13.Schaaff, T.G.S., M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Wing C.; Ascensio, J.; Yacaman, M. J., " Article Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra," J. Phys. Chem. B, vol. 101, 1997, pp. 7885.
14.Leff, D.V.B., L.; Heath, J. R., " Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines," Langmuir, vol. 12, 1996, pp. 4723.
15.Yee, C.K.J., R.; Ulman, A.; White, H.; King, A.; Rafailovich, M.; Sokolov, J., " Novel One-Phase Synthesis of Thiol-Functionalized Gold, Palladium, and Iridium Nanoparticles Using Superhydride ," Langmuir, vol. 15, 1999, pp. 3486.
16.Shon, Y.S.G., S. M.; Dawson, B.; Porter, M.; Murray, R. W. , "Alkanethiolate-Protected Gold Clusters Generated from Sodium S-Dodecylthiosulfate (Bunte Salts)," Langmuir, vol. 16, 2000, pp. 6555.
17.Grabar, K.C.F., R. G.; Hommer, M. B.; Natan, M. J. , " Preparation and Characterization of Au Colloid Monolayers," Anal. Chem., vol. 67, 1995, pp. 735.
18.Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London), vol. 241, 1973, pp. 20.
19.Wilcoxon, J.P.W., R. L.; Baughman, R., " Optical properties of gold colloids formed in inverse micelles," J. Chem. Phys., vol. 98, 1993, pp. 9933.
20.Jana, N.R., L. Gearheart, and C.J. Murphy, Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, vol. 17, 2001, pp. 6782-6786.
21.Kuo, C.H., et al., Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate. Langmuir, vol. 20, 2004, pp.7820-7824.
22.Thurn-Albrecht, T., et al., "Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates". Science, vol. 290, 2000, pp. 2126-2129.
23.Choi, J.-S.J., Y.-W.; Yeon, S.-I.; Kim, H. C.; Shin, J.-S.; Cheon, J., " Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection," J. Am. Chem. Soc. , vol. 128, 2006, pp. 15982-15983.
24.Lee, K.-S.E.-S., M. A., " Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition," J. Phys. Chem. B , vol. 100, 2006, pp. 19220.
25.Arindam Saha, S.B., Rupa Sarkar, Narayan Pradhan, and Nikhil R. Jana., " Functionalized Plasmonic−Fluorescent Nanoparticles for Imaging and Detection," J. Phys. Chem. C, vol. 113, 2009, pp. 18492-18498.
26.Wendy U. Huynh, J.J.D., A. Paul Alivisatos., " Hybrid Nanorod-Polymer Solar Cells," Science, vol. 295, 2002, pp. 2425.
27.Stacey D. Standridge, G.C.S., and Joseph T. Hupp., " Distance Dependence of Plasmon-Enhanced Photocurrent in Dye-Sensitized Solar Cells," J. Am. Chem. Soc., vol. 131, 2009, pp. 8407-8409.
28.Abhishek P. Kulkarni, K.M.N., Keiko Munechika, Samuel R. Guyer, and David S. Ginger., " Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms," Nano Lett., vol. 10, 2010, pp. 1501-1505.
29.Michael D. Brown, T.S., R. Sai Santosh Kumar, Valerio D’Innocenzo, Annamaria Petrozza, Michael M. Lee, Ulrich Wiesner, and Henry J. Snaith., " Plasmonic Dye-Sensitized Solar Cells Using Core−Shell Metal−Insulator Nanoparticles," Nano Lett., vol. 11, 2011, pp. 438-445.
30.Cao., Y.C., " Light Touch Identifies Wisps of Rogue DNA," Science, vol. 297, 2002. pp. 1536.
31.Kim, M.S.P., D. H.; Cho, E. H.; Kim, K. H.; Park, Q.-H.; Song, H.; Kim, D.-C.; Kim, J.; Joo, J., " Complex Nanoparticle of Light-Emitting MEH-PPV with Au: Enhanced Luminescence," ACS Nano, vol. 3, 2009, pp. 1329-1334.
32.何符漢、蔡定平、劉威志, 表面電漿子理論與模擬,物理雙月刊, (4) 24 2002. p. 558.
33.Park, H.J., et al., "Surface plasmon enhanced photoluminescence of conjugated polymers". Applied Physics Letters, vol. 90, 2007. 90(16). 161107
34.Link, S.E.-S., M. A., "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Journal of Physical Chemistry B",.1999. 103(21): p. 4212-4217.
35.Papavassiliou, G.C., "Optical-Properties of Small Inorganic and Organic Metal Particles." Progress in Solid State Chemistry, vol. 12, 1979, pp. 185-271.
36.Link, S. and M.A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," Journal of Physical Chemistry B, vol. 103, 1999, pp. 8410-8426.
37.Templeton, A.C., et al., "Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters," Journal of Physical Chemistry B, vol. 104, 2000, pp. 564-570.
38.Ghosh, S.K., et al., "Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids," J. Phys. Chem. B., vol. 108, 2004, pp. 13963-13971.
39.Anker, J.N., et al., "Biosensing with plasmonic nanosensors," Nature Materials, vol. 7, 2008, pp. 442-453.
40.Okamoto, K., et al., "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Materials, vol. 3, 2004, pp. 601-605.
41.EM, P., "Spontaneous emission probabilities at radio frequencies," Phys. Rev., vol. 69, 1946, pp. 681.
42.Xuefeng Gu, T.Q., Wenjun Zhang, Paul K Chu, "Light-emitting diodes enhanced by localized surface plasmon resonance," Nanoscale Research Letters, vol. 6 2011:199
43.Arup Neogi, C.-W.L., and Henry O. Everitt, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling, " Phys Rev B., vol. 66, 2002, pp. 153305.
44.Koichi Okamoto, I.N., and Axel Scherer, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett., vol. 87, 2005, 071102.
45.Park, S.J., et al., "Surface-plasmon-enhanced light-emitting diodes," Advanced Materials, vol. 20, 2008, pp. 1253.
46.Fujiki, A., et al., "Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode," Applied Physics Letters, vol. 96, 2010, 043307
47.Yeh, D.M., et al., "Localized surface plasmon-induced emission enhancement of a green light-emitting diode,". Nanotechnology, vol. 19, 2008, pp. 345201
48.Beom-Hoan, O., et al., "Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance," Microelectronic Engineering, vol. 86, 2009, pp. 1120-1123.
49.Qiu, T., et al., "Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays," Applied Physics Letters, vol. 95, 2009, 213104
50.Park, S.J., et al., "Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons," Advanced Materials, vol. 20, 2008, pp. 3100-3104.
51.Zhang, X.W., et al., "Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles," Nanoscale Research Letters, vol. 4, 2009, pp. 1121-1125.
52.Yang, D.R., et al., "Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film," Applied Physics Letters, vol. 92, 2008, 041119
53.Pillai, S., et al., "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Applied Physics Letters, vol. 88, 2006, 161102
54.Eustis, S. and M.A. El-Sayed, "Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes," Chemical Society Reviews, vol. 35, 2006, pp. 209-217.
55.Pompa, P.P., et al., "Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control," Nature Nanotechnology, vol. 1, 2006, pp. 126-130.
56.Mak GY, F.W., Lam EY, Choi HW, "Metallic nanoparticle array on GaN by microsphere lithography," Phys Status Solidi C, vol. 6, 2009, pp. S654–S657
57.Turkevich. J., H. J., " Electron Microscopy of Colloidal Systems," Anal. Chem.,vol. 21, 1949, p. 475.
58.Overbeek, J.T.G., " Monodisperse colloidal systems, fascinating and useful," Adv. Colloid Interface Sci., vol. 15, 1982, pp. 251.
59.Schneider, S.H., P.; Grau, H.; Nickel, U., " Reproducible preparation of silver sols with uniform particle size for application in sur-face-enhanced Raman spectroscopy," Photochem. Photobiol., vol. 60, 1994, pp. 605.
60.Huo, Q., et al., "Extinction coefficient of gold nanoparticles with different sizes and different capping ligands," Colloids and Surfaces B-Biointerfaces, vol. 58, 2007, pp. 3-7.
61.Thomas, K.G., J. Zajicek, and P.V. Kamat, "Surface binding properties of tetraoctylammonium bromide-capped gold nanoparticles," Langmuir, vol. 18, 2002, p. 3722-3727.
62.Malinsky, M.D., et al., "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc., vol. 123, 2001, pp. 1471-1482.
63.Ghosh S K, N.S., Kundu S, et al., " Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids," J. Phys. Chem. B, vol. 108, 2004, pp. 13963-13971.
64.Hostetler, M.J., et al., "Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size," Langmuir, vol. 14, 1998, pp. 17-30.
65.Cheng, J.A., et al., "The fluorescent quantum efficiency of copolymers containing coumarin-6 at the side-chain," Journal of Polymer Research, vol. 12, 2005, pp. 53-59.
66.Hoppe, H., N.S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Molecular Crystals and Liquid Crystals, vol. 385, 2002, pp. 233-239.
67.Manoj A.G. Namboothiry, et al., "Electrochromic properties of conducting polymer metal nanoparticles composites," Synthetic Metals, vol. 157, 2007, pp. 580-584.
68.Neal, T.D., K. Okamoto, and A. Scherer, "Surface plasmon enhanced emission from dye doped polymer layers," Optics Express, vol. 13, 2005, pp. 5522-5527.
69.Rothberg, S.P.a.L.J., "Enhancement of Platinum Octaethyl Porphyrin Phosphorescence near Nanotextured Silver Surfaces," J. Am. Chem. Soc., vol. 127, 2005, pp. 6087-6094.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top