跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/09 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鎮宇
研究生(外文):Chen-Yu Chang
論文名稱:微波水熱法合成鋅膨潤石
論文名稱(外文):Synthesis of Zn-smectite with microwave-hydrothermal process
指導教授:余炳盛余炳盛引用關係
指導教授(外文):Bing-Sheng Yu
口試委員:方建能陳惠芬王玉瑞
口試委員(外文):Fang, Jiann-NengHuei-Fen ChenYuh-Ruey Wang
口試日期:2011-06-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:資源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:92
中文關鍵詞:微波水熱法鋅膨潤石比表面積陽離子交換容量表面改質
外文關鍵詞:Microwave-hydrothermal processZn-smectitespecific areacation exchange capacitysurface modification
相關次數:
  • 被引用被引用:3
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微波水熱法合成鋅膨潤石,並控制化學式x值、溫度、時間、鈉添加量等條件,比較鋅膨潤石產物之純度、比表面積、陽離子交換容量,探討微波水熱法合成膨潤石較佳參數。
研究結果顯示,根據化學式Na2x[Al2(1-x)M2x□u]Si4O10(OH,F)2∙nH2O配製前驅物,採用SiO2-Al(OH)(CH3COO)2-Zn(CH3COO)2-NaCOOCH3系統,較為容易結晶形成膨潤石,配比x=0.3、0.4、0.5均可合成鋅膨潤石,溫度低於190℃、時間不長於15小時,其結晶成長及性質提升與溫度、時間為正相關,但當溫度達200℃或時間20小時則導致產物結晶性較差與陽離子交換容量較小等負面影響。
使用配比x=0.3、0.4、0.5,鈉適度添加Na=2x+0.2可有效提升產物之鋅膨潤石純度,且相較於鈉過量添加Na=4x+0.2,增加x=0.4產物比表面積高達55.32 m2/g,而產物陽離子交換容量則分別為72.25、84.22、90.63meq/100g,因此鈉添加量Na=2x+0.2有助於提升產物之性質。
本研究以CTAB進行表面改質,以FT-IR檢測產物表面官能基以及以XRD檢測膨潤石層間膨脹情形,顯示成功將產物進行表面改質,而CTAB分子於膨潤石層間則以Pseudo-trilayer排列。


Zn-smectite is synthetized by Microwave-hydrothermal process in this study, and control conditions as chemical x-value, temperature, time, the content of sodium. The better parameters of microwave-hydrothermal synthesis Zn-smectite are discussed by comparing Zn-smectite product''s purity, specific area, cation exchange capacity.
The results show that, preparation of precursors according to the chemical formula Na 2x [Al2(1-x)M2x□u]Si4O10(OH,F)2∙nH2O, and the use of SiO2 - Al(OH)(CH3COO)2 - Zn(CH3COO)2 - NaCOOCH3 system are more likely to crystallize the formation of Zn-smectite. The parameters are controlled as ratio x = 0.3, 0.4, 0.5, below 190oC, and time of synthesis is no longer than 15 hours, growth of crystal and increase of property are positive to temperature and time. However, temperature reaches 200oC or time reaches 20 hours are resulted in poor crystalline product with smaller cation exchange capacity and other negative effects.
The ratio x = 0.3, 0.4, 0.5 of chemical formula and sodium content of precursor Na=2x+0.2 enhance the purity of Zn-smectite effectively, compared with sodium content of precursor Na=4x+0.2, increases specific area 55.32 m2/g of product(x=0.4), while cation exchange capacity of products are 72.25, 84.22, 90.63 meq/100g. The sodium content Na=2x+0.2 of precursor help to improve the property of product.
In this study, surface modification of product is proceeding by CTAB. FT-IR analyze the surface functional groups of product and XRD analyze Zn-smectite interlayer expansion of the case. The results indicate the success of the product specific area modification, while the CTAB molecules organize Pseudo-trilayer in Zn-smectite interlayer.


摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
第二章 基礎理論與文獻回顧 7
2.1 黏土礦物類型與結構 7
2.2 膨潤石特性 13
2.2.1 分散懸浮性 13
2.2.2 吸附膨脹性 14
2.2.3 離子交換性 14
2.2.4 觸變性 15
2.2.5 熱穩定性 15
2.3 水熱合成法 16
2.3.1 水熱合成法之背景 16
2.3.2 水熱合成法之反應機制 18
2.3.3 微波輔助合成及原理 20
第三章 研究方法 30
3.1 研究方法與流程 30
3.1.1 實驗藥品 31
3.1.2 實驗設備及分析儀器 32
3.1.3 前驅物製備流程 33
3.1.4 微波合成膨潤石流程 35
3.1.5 陽離子交換容量檢測 35
3.1.6 膨潤石表面改質 37
3.2 分析儀器原理及分析條件 38
3.2.1 X光繞射分析儀 39
3.2.2 掃描式電子顯微鏡 39
3.2.3 原子吸收光譜儀 39
3.2.4 比表面積檢測儀 40
3.2.5 紅外線光譜儀 40
第四章 實驗結果與討論 41
4.1 不同前驅物配製與合成相之關係 41
4.1.1 SiO2-Al2O3-ZnO-NaCOOCH3-NaF之微波水熱合成結果 42
4.1.2 SiO2-Al(OH)(CH3COO)2-ZnO-NaCOOCH3-NaF之微波水熱合成結果 44
4.1.3 SiO2-Al(OH)(CH3COO)2-Zn(CH3COO)2-NaCOOCH3 -NaF之微波水熱合成結果 47
4.1.4 SiO2-Al(OH)(CH3COO)2-Zn(CH3COO)2-NaCOOCH3 -NaF之烘箱水熱合成結果 49
4.2 反應溫度對於前驅物合成鋅膨潤石之影響 50
4.2.1產物相與純度 51
4.2.2粉體比表面積 57
4.3 反應時間對於前驅物合成鋅膨潤石之影響 60
4.3.1產物相與純度 60
4.3.2粉體比表面積 66
4.3.3陽離子交換容量 68
4.4 前驅物Na添加量對於合成膨潤石之影響 71
4.4.1產物相與純度 71
4.4.2粉體比表面積 74
4.4.3陽離子交換容量 75
4.5鋅膨潤石改質 80
4.5.1 CTAB改質劑表面修飾 81
4.5.2改質前後膨脹性 84
第五章 結論 86
參考文獻 88


[1] 姜桂蘭、張培萍,膨潤土加工與應用,北京;化學工業出版社,2005。
[2] 吳平霄,黏土礦物材料與環境修復,北京;化學工業出版社,2004。
[3] 柯揚船、皮特.斯壯,聚合物-無機奈米複合材料,台北;五南出版社,2004。
[4] 陳文泉,高放射性廢棄物深層地質處置緩衝材料之回脹行為研究,碩士論文,中央大學,桃園,2004。
[5] 王澤民、周鳳岐、馬小凡、邱立民,「膨潤土的提純及應用研究」,非金屬礦,第二十二卷,第三期,1999,第19-20頁。
[6] N. Leadbeater, C. McGowan, "Clean, fast organic chemistry: microwave-assisted laboratory experiments," CEM Discover, 2007
[7] M. Reinholdt, J. Miehe Â-Brendleâ, L. Delmotte L., R. Ledred and M.H. Tuilier, "Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium," Clay minerals, Vol. 40, 2005, pp.177-190.
[8] S. Higasshi, K. Miki, S. Komarneni, "Hydrothermal synthesis of Zn-smectites," Clay and Clay Mineral, Vol. 50, No. 3, 2002, pp. 99-305.
[9] 張維仁,水熱法合成鋅蒙脫石之研究,碩士論文,台北科技大學,台北,2009。
[10] 張修瑜,元素補償添加對水熱合成鋅膨潤石影響之研究,碩士論文,台北科技大學,台北,2010。
[11] R.E. Grim, Clay Mineralogy, 2nd Edn, McGraw-Hill, New York, 1968, pp. 596.
[12] J.T. Kloprogge, S. Komarneni, J.E. Amonette, "Synthesis of smectite clay minerals:A critica review," Clay and Clay Mineral,Vol. 47, No. 5, 1999, pp. 529-554.
[13] 黃啟倫,以水熱合成Mn-α-alumina/mullite/silica粉體殼核結構,碩士論文,成功大學,台南,2006。
[14] A. Rabenau, "The role of hydrothermal synthesis in preparative chemistry," Angewandte Chemie: International Edition in English, Vol. 24, 1985, pp.1026-1040.
[15] T. Sugimoto T., "Preparation of monodispersed colloidal particles," Advances in Colloid and Interface Science, Vol. 28, 1987, pp.65-108.
[16] O.Y. Golubeva, E.N. Korytkova, V.V. Gusarov, "Hydrothermal synthesis of magnesium silicate montmorillonite for polymer-clay nanocomposites," Russian Journal of Applied Chemistry, Vol. 78, No. 1, 2005, pp.26-32
[17] H.M. Kingston, L.B Jassie, "Introduction to microwave sample preparation:theory and practice, " American Chemical Society, Washington, 1988.
[18] S.A. Galema, "Microwave chemistry," Chemical Society Reviews, Vol. 26, 1997, pp.233-238
[19] D.M.P. Mingos, D.R. Baghurst, "Application of microwave dielectric heating effects to synthetic problems in chemistry," Chemical Society Reviews, Vol. 20, 1991, pp.1-47
[20] 田福助,電化學:基本原理與應用,台北市;五洲出版社,2004。
[21] "Arrhenius equation," IUPAC Compendium of Chemical Terminology, 2nd edition, 1997.
[22] "activation energy (Arrhenius activation energy)," IUPAC Compendium of Chemical Terminology, 2nd edition, 1997.
[23] A. Vaccari, "Preparation and catalytic properties of cationic and anionic clays," Applied Clay Science, Vol.41, 1998, pp.53-71.
[24] J. Konta, "Clay and man: clay raw materials in the service of man," Applied Clay Science, Vol.10, 1995, pp.275-335.
[25] H.H. Murray, "Traditional and new applications for kaolin, smectite, and palygorskite: a general overview," Applied Clay Science, Vol.17, 2000, pp.207-221.
[26] J.H. Choy, S.J. Choi, J.M. Oh, T. Park, "Clay minerals and layered double hydroxides for novel biological applications," Applied Clay Science, Vol.36, 2007, pp.122-132.
[27] C.H. Zhou, D.S. Tong, M.H. Bao, Z.X. Du, Z.H. Ge, X.N. Li, "Generation and characterization of catalytic nanocomposite materials of highly isolated iron nanoparticles dispersed in clays," Top. Catal., Vol.39, 2006, pp.213-219.
[28] S.G. Adoor, M. Sairam, L.S. Manjeshwar, K.V.S.N. Raju, T.M. Aminabhavi, "Sodium montmorillonite clay loaded novelmixedmatrixmembranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1, 4-dioxane," J. Membr. Sci., Vol.285, 2006, pp.182-195
[29] Y. Kim, J.S. Lee, C.H. Rhee, H.K. Kim, H. Chang, "Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes," J. Power Sources, 2006, Vol.162, pp.180-185.
[30] F. Bergaya, G. Lagaly, "General Introduction: clays, clay minerals, and clay science," In: F. Bergaya, B.K.G. Theng, G. Lagaly, Handbook of Clay Science: Developments in Clay Science, Vol.1, 2006, Amsterdam, Elsevier, pp. 1-18.
[31] D. Zhang, D.S. Tong, H.S. Xia, G.F. Jiang, X. Xia, M. Liu, W.H. Yu, C.H. Zhou, "Hydrothermal synthesis of clay minerals," 14th Intl. Clay Conf., Micro ET Nano ScientIE Mare Magnum, Castellaneta M., Italy, 2009, pp. 432.
[32] W. Noll, "Uber die bildungsbedingungen von kaolin, montmorillonit, sericit, pyrophyllit and analcim," Tschermaks Mineralogische und Petrologische Mitteilungen, Vol. 48, 1936, pp. 210-247.
[33] M. Koizumi, R. Roy, "Synthetic montmorillonoids with variable exchange capacity," American Mineralogist, Vol. 44, 1959, pp. 788-805.
[34] M.E. Harward, G.W. Brindley, "Swelling properties of synthetic smectites in relation to lattice substitutions," Clays and Clay Minerals, Vol.13, 1966, pp.209-222.
[35] Y. Otsubo, C. Kato, " Hydrothermal synthesis of montmorillonite-type silicates. " III. J. Chem. Soc., Jpn., Vol.75, 1954, pp.456-459.
[36] M.Reinholdt, J.M. Brendle, L. Delmotte, M.H. Tuilier, R.L. Dred, R. Cortes, A.M. Flank, "Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, Thermal Analysis, MAS NMR, and EXAFS Spectroscopy," European Journal of Inorganic Chemistry, 2001, pp. 2831-2841.
[37] S. Lantenois, R. Champallier, J. M. Beny, F. Muller, "Hydrothermal synthesis and characterization of dioctahedral smectites:A montmorillonites series," Applied Clay Science,Vol. 38, 2007, pp.165-178.
[38] J.T. Kloprogge, J. Breukelaar, J.W. Geus, J.B.H. Jansen, "Characterization of Mg saponites synthesized from gels containing amounts of Na+, K+, Rb+, Ca2+, Ba2+, or Ce4+ equivalent to the CEC of the saponite.," Clays Clay Miner, Vol.42, 1994, pp.18-22.
[39] S. Komarneni, R. Roy, Q.H. Li, "Microwave-hydrothermal synthesis of ceramic powders," Mater. Res. Bul, Vol.27, 1992, pp.1393-1405.
[40] H.M. Kingston, S.J. Haswell, "Microwave-enhanced chemistry fundamentals, sample preparation and applications," American Chemical Society, Washington DC. 1997.
[41] B.L. Newalkar, J. Olanrewaju, S. Komarneni, "Microwave-hydrothermal synthesis and characterization of zirconium-substituted SBA-15 mesoporous silica," J. Phys. Chem., B105, 2001, pp.8356-8360.
[42] O. Bergadà, I. Vicente, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, "Microwave effect during aging on the porosity and basic properties of hydrotalcites," Microporous Mesoporous Mater, Vol.101, 2007, pp.363-373.
[43] I. Vicente, P. Salagre, Y. Cesteros, F. Guirado, F. Medina, J.E. Sueiras, "Fast microwave synthesis of hectorite," Applied Clay Science, Vol.43, 2009, pp.103-107
[44] I. Vicente, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, "Microwave-assisted synthesis of saponite," Applied Clay Science, Vol.48, 2010, pp.26-31
[45] D. Zhang, C.H. Zhou, C.X. Lin, D.S. Tong, W.H. Yu, "Synthesis of clay minerals, " Applied Clay Science, Vol.50, 2010, pp.1-11.
[46] S. Caillere, S. Henin, M.Rautureau, Mineralogie des argiles. Tome 1: Structure et Proprietes Physico-chimiques, Masson, France, 1982a, pp. 14-37.
[47] E. Grim, Clay mineralogy, second edition, 1969, pp. 69
[48] 金欽漢,微波化學,北京;科學出版社,1999。
[49] B. Scott, J. Crouse, M. Correia, L. Sun, G. Villemure, "Preparation of well-ordered hexagonal particles of synthetic cobalt smectites containing electrochemically active cobalt(II) sites, " Applied Clay Science Vol. 48, 2010, pp. 46–54.
[50] S. Lantenois, R. Champallier, J. M. Beny, F. Muller, "Hydrothermal synthesis and characterization of dioctahedral smectites:A montmorillonites series," Applied Clay Science,Vol. 38, 2007, pp.165-178.
[51] L. Wang, A. Wang, "Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite," Journal of Hazardous Materials, Vol. 160, 2008, pp. 173–180.
[52] 漆宗能、尚文宇,聚合物/層狀矽酸鹽奈米複合材料,台北市;五南出版社,2004。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊