跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊鍾緯
研究生(外文):Chung-Wei Yang
論文名稱:具脈波充電與數位監控之鉛酸電池串聯充電等化器
論文名稱(外文):Series Charge Equalizer with Pulse Charging and Digital Monitoring
指導教授:胡國英
口試委員:謝振中林伯仁
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:132
中文關鍵詞:返馳式轉換器邊界導通模式功率因數修正脈波充電串聯定電壓充電串聯定電流充電單顆電池定電壓充電場效邏輯閘陣列數位化監控無類比數位轉換器之取樣技術
外文關鍵詞:Flyback ConverterCRMPFCPulse ChargingSeries Constant Voltage ChargingSeries Constant Current ChargingConstant Voltage Charging for a Single BatteryFPGAWithout Any ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:573
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本論文係研製一具脈波充電與數位監控之鉛酸電池串聯充電等化器,其主電路架構係採用一返馳式轉換器,其轉換器之控制核心係採用一具有功率因數修正功能之積體電路(Integrated Circuit, IC),型號為L6562,尤其,在此轉換器之輸出端移除輸出電容,以使得轉換器輸出電流為脈波,進而達到脈波充電之目的。此外,其充電所採用之電池係為兩顆串聯之12V的鉛酸電池,同時,加入少許輔助元件以對串聯鉛酸電池進行等化充電,其功能包含串聯定電壓充電、串聯定電流充電、以及當電池在接近充飽時以單顆電池進行定電壓充電。本論文之充電法則係採用定電壓定電流脈波充電法,在充電過程中提供電池充電所需之休息時間,讓電池內部的電解液在電化學反應上可獲得中和緩衝的時間,進而延長電池壽命、防止電池快速老化等優點。除此之外,本論文係採用場效邏輯閘陣列(Field Programmable Gate Array, FPGA)作為系統監控之核心,並採用無類比數位轉換器(Analog-to-Digital Converter, ADC)之取樣技術以獲得電池電壓的資訊。最後,藉由理論推導、模擬及實驗來驗證所提架構之可行性及有效性。

In this thesis, a series charge equalizer with pulse charging and digital monitoring is presented, which is mainly built up by a flyback converter controlled by a power-factor-corrected (PFC) control integrated circuit (IC) named L6562. Above all, the output capacitor is removed from this converter to obtain the pulsating output current, so as to achieve pulse charging. Aside from this, two 12V lead-acid batteries connected in series are equalizedly charged, by the flyback converter along with several auxiliary components.
There are three charging functions in the proposed charge equalizer, containing series constant voltage charging, series constant current charging, and constant voltage charging for a single battery at near the full charging. In this thesis, the charging rule adopts pulse wave charging with constant current or constant voltage, and hence by doing so, the rest interval during the charging period is provided to make the electrical chemical response moderated, so as to prolong the life of the battery and hence to inhibit its fast aging.
Aside from this, the field programmable gate array (FPGA) is used as a system monitoring kernel, and the information on the battery voltage is obtained without any analog-to-digital converter (ADC).
Finally, via theoretical deduction, simulation and experiment, the feasibility and effectiveness of the proposed topology can be demonstrated.


中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii 
圖目錄 ix
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 10
1.3 論文內容架構 11
第二章 鉛酸電池原理與特性介紹 12
2.1 前言 12
2.2 鉛酸電池原理 12
2.3 鉛酸電池種類 13
2.4 鉛酸電池之相關知識 14
2.5 實驗用之電池規格與充電方法 16
第三章 所選用之轉換器動作原理分析及充電架構說明 18
3.1 前言 18
3.2 操作在臨界導通模式之返馳式轉換器動作原理 18
3.3 轉換器動作原理分析 22
3.4 充電器架構說明 28
3.5 操作於臨界導通模式下之返馳式轉換器理論分析 32
第四章 硬體電路設計 37
4.1 系統架構 37
4.2 系統規格 39
4.3 系統元件參數設計 40
4.3.1 變壓器設計 40
4.3.2 LC緩衝器設計 47
4.3.3 主電路之開關元件與二極體選配 49
4.4 L6562所需之感測訊號 54
4.5 無ADC取樣電路設計 60
4.5.1 三角波產生器之設計 61
4.5.2 加法器與比較器之設計 63
4.6 多工器 64
4.7 控制IC 67
4.8 FPGA電路板介紹 69
第五章 軟體規劃與充電模式設計流程 70
5.1 VHDL程式簡介 70
5.1.1 Library宣告區 71
5.1.2 Use宣告區 71
5.1.3 Entity宣告區 71
5.1.4 Architecture宣告區 72
5.1.5 物件模式及型別 72
5.2 程式動作流程 73
5.3 無ADC之電池電壓取樣計數 74
5.4 充電模式選擇之流程圖 76
第六章 模擬與實驗波形 83
6.1 IsSpice電路模擬波形 83
6.1.1 IsSpice電路模擬波形之小結 87
6.2實驗波形 88
6.2.1串聯定電流模式充電時之相關波形 88
6.2.2串聯定電壓模式充電時之相關波形 91
6.2.3 Battery1單顆電池定電壓模式充電時之相關波形 95
6.2.4 Battery2單顆電池定電壓模式充電時之相關波形 99
6.2.5 總小結 104
6.3無ADC取樣之波形 105
6.3.1串聯定電流模式下之無ADC取樣波形 105
6.3.2串聯定電壓模式下之無ADC取樣波形 107
6.3.3 Battery1單顆電池定電壓模式下之無ADC取樣波形 108
6.3.4 Battery2單顆電池定電壓模式下之無ADC取樣波形 110
6.4 相關參數量測 111
第七章 結論與未來展望 115
7.1 結論 115
7.2 未來展望 115
參考文獻 117
符號彙編 128


[1]A. M. Rahimi, “A lithium-ion battery charger for charging up to eight cells,” IEEE VPPC’05, pp. 131-136, 2005.
[2]S. H. Park, T. S. Kim, J. S. Park, G. W. Moon and M. J. Yoon, “A new buck-boost type battery equalizer,” IEEE APEC’09, pp. 1246-1250, 2009.
[3]H. S. Kim, K. B. Park, S. H. Park, G. W. Moon and M. J. Youn, “A new two-switch flyback battery equalizer with low voltage stress on the switches,” IEEE ECCE’09, pp. 511-516, 2009.
[4]H. Park, C. H. Kim, K. B. Park, G. W. Moon and J. H. Lee, “Design of a charge equalizer based on battery modularization,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3216-3223, 2006.
[5]C. H. Kim, Y. D. Kim, Gun-Woo Moon and Hong-sun Park, “Individual cell voltage equalizer using selective two current paths for series connected Li-ion battery strings,” IEEE ECCE’09, pp. 1812-1817, 2009.
[6]Y. S. Lee and G. T. Cheng, “Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1213-1224, 2006.
[7]Y. S. Lee and M. W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1297-1307, 2005.
[8]W. J. and B. Fahimi, “Phase-shift controlled multilevel bidirectional DC/DC converter: a novel solution to battery charge equalization in fuel cell vehicle,” IEEE VPPC’07, pp. 587-590, 2007.
[9]M. Tang and T. Stuart, “Selective buck-boost equalizer for series battery packs,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 1, pp. 201-211, 2000.
[10]P. A. Cassani and S. S. Williamson, “Significance of battery cell equalization and monitoring for practical commercialization of plug-in hybrid electric vehicles,” IEEE APEC’09, pp. 465-471, 2009.
[11]G. Venkataramanan, “A direct AC-DC converter for battery chargers,” IEEE PESC’97, pp. 126-130, 1997.
[12]C. Karnjanapiboon, K. Jirasereeamornkul and V. Monyakul, “Charge equalized module for serially connected VRLA battery string using quasi-resonant flyback converter,” IEEE ICIEA’10, pp. 2148-2153, 2010.
[13]XueZhe. Wei, Xiaopeng. Zhao and Dai Haifeng, “The application of flyback DC/DC converter in Li-ion batteries active balancing,” IEEE VPPC’09, pp. 1654-1656, 2009.
[14]C. Karnjanapiboon, K. Jirasereeamornkul and V. Monyakul, “The high efficiency charge equalized system for serially connected VRLA battery string using synchronous flyback converter,” IEEE IPEC’10, pp. 1654-1656, 2010.
[15]Y. S. Lee, C. E. Tsai, Y. P. Ko and M. W. Cheng, “Charge equalization using quasi-resonant converters in battery string for medical power operated vehicle application,” IEEE IPEC’10, pp. 2722-2728, 2010.
[16]A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery charge equalization technique,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2277-2285, 2008.
[17]N. H. Kutkut, “A modular nondissipative current diverter for EV battery charge equalization,” IEEE APEC’98, pp. 686-690, 1998.
[18]N. H. Kutkut, Wiegman, L. N. Herman, D.M. Divan and D. W. Novotny, “Design considerations for charge equalization of an electric vehicle battery system,” IEEE Transactions on Industry Applications, vol. 35, no. 1, pp. 28-35, 1999.
[19]M. W. Cheng, Y.-S. Lee, R. H. Chen and Wun-Tong Sie, “Cell voltage equalization using ZCS SC bidirectional converters,” IEEE INTLEC’09, pp. 1-6, 2009.
[20]H. S. Park, C. E. Kim, G. W. Moon, J. H. Lee and J. K. Oh, “Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle Li-ion battery system,” IEEE PESC’07, pp. 266-272, 2007.
[21]H. S. Park, C. E. Kim, C. H. Kim, B. C. Kim, G. W. Moon and J. H. Lee, “Modularized charge equalization converter with high power density and low voltage stress for HEV lithium-ion battery string,” IEEE ICPE’07, pp. 784-789, 2007.
[22]C. H. Kim, H. S. Park, C. E. Kim, G. W. Moon, J. H. Lee and J. K. Oh, “Charge equalization converter with parallel primary winding for series connected lithium-ion Battery strings in HEV,” IEEE ICPE’07, pp. 795-800, 2007.
[23]M. Chen, Z. Zhang, Z. Feng, J. Chen and Z. Qian, “An improved control strategy for the charge equalization of lithium ion battery,” IEEE APEC’09, pp. 186-189, 2009.
[24]Y. C. Hsieh, C. S. Moo and W. Y. Ou-Yang, “A bi-directional charge equalization circuit for series-connected batteries,” IEEE PEDS’05, pp. 1578-1583, 2005.
[25]H. S. Park, C. E. Kim, C. H. Kim, G. W. Moon and J. H. Lee, “A modularized charge equalizer for an HEV lithium-ion battery string,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1464-1476, 2009.
[26]H. Shen, W. Zhu and W. Chen, “Charge equalization using multiple winding magnetic model for lithium-ion battery string,” IEEE APPEEC’10, pp. 1-4, 2010.
[27]W. Hong, K. S. Ng, J. H. Hu and C. S. Moo, “Charge equalization of battery power modules in series,” IEEE IPEC’10, pp. 1568-1572, 2010.
[28]J. Yan, Z. Cheng, G. Xu, H. Qian and Y. Xu, “Fuzzy control for battery equalization based on state of charge,” IEEE VETECF’10, pp. 1-7, 2010.
[29]C. H. Kim, H. S. Park and G. W. Moon, “A modularized two-stage charge equalization converter for series connected lithium-ion battery strings in an HEV,” IEEE PESC’08, pp. 992-997, 2008.
[30]X. Wang, S. Yang, N. J. Park, K. J. Lee and D. S. Hyun, “A three-port bidirectional modular circuit for Li-ion battery strings charge/discharge equalization applications,” IEEE PESC’08, pp. 4695-4698, 2008.
[31]H. Shen, W. Zhu and W. Chen, “Charge equalization for series connected lithium-ion batteries,” IEEE ICEMI’09, pp. 4-1032 - 4-1037, 2009.
[32]C. C. Hua and C. H. Hsu, “Implementation of a regenerative pulse and equalization battery charger using a DSP,” IEEE PEDS’05, pp. 955-959, 2005.
[33]T. Z. Wu, H. J. Zhou, S. Yang and F. Z. Xia, “Study on the equalizing charge of serial Ni-MH traction batteries,” IEEE ICECE’10, pp. 4325-4328, 2010.
[34]H. S. Park, C. E. Kim, G. W. Moon, J. H. Lee and J. K. Oh, “Two-Stage cell balancing scheme for hybrid electric vehicle lithium-ion battery strings,” IEEE PESC’07, pp. 273-279, 2007.
[35]G. Pellegrino, E. Armando and P. Guglielmi, “An integral battery charger wit power factor correction for electric scooter,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 751-759, 2010.
[36]T. A. Stuart and W. Zhu, “Fast equalization for large lithium-ion batteries,”IEEE MAES’09, pp. 27-31, 2009.
[37]Y. Du, M. Wang, R. T. Meitl, S. Lukic and A. Q. Huang, “High-frequency high-efficiency DC-DC converter for distributed energy storage modularization,” IEEE IECON’10, pp. 1832-1837, 2010.
[38]L. R. Chen, C. P. Chou, G. Y. Han, H. C. Chang and Y. D. Lin, “A design of a digital frequency-locked battery charger for Li-ion batteries,” IEEE ISIE’05, pp. 1093-1098, 2005.
[39]W. Du, X. Huang, S. Yang, F. Zhang, X, Wu and Z. Qian, “A novel equalization method with defective-battery-replacing for series-connected lithium battery strings,” IEEE ECCE’09, pp. 1806-1811, 2009.
[40]Y. S. Lee, C. Y. Duh, G. T. Chen and S. C. Yang, “Battery equalization using bi-directional Cûk converters in DCVM operation,” IEEE PESC’05, pp. 765-771, 2005.
[41]C. A. Bendall and W. A. Peterson, “An EV on-board battery charger,” IEEE PESC’96, pp. 26-31, 1996.
[42]J. J. Chen, F. C. Yang, C. C. Lai, Y. S. Hwang and R. G. Lee, “A high-efficiency multimode Li-ion battery charger with variable current source and controlling previous-stage supply voltage,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2469-2478, 2009.
[43]M. Chen and G. A. R. Mora, “Accurate, compact, and power-efficient Li-ion battery charger circuit, ” IEEE Transactions on Circuits and Systems, vol. 53, no. 11, pp. 1180-1184, 2006.
[44]G. C. Hsieh, L. R. Chen and K. S. Huang, “Fuzzy-controlled Li-ion battery charge system with active state-of-charge controller,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 585-593, 2001.
[45]L. R. Chen, R. C. Hsu and C. S. Liu, “A design of a grey-predicted Li-ion battery charge system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3692-3701, 2008.
[46]V. Coroban, I. Boldea and F. Blaabjerg, “A novel on-line state-of-charge estimation algorithm for valve regulated lead-acid batteries used in hybrid electric vehicles,” IEEE ACEMP’07, pp. 39-46, 2007.
[47]Q. Hu and Z. Lu, “A novel full-digital bidirectional constant current source converter,” IEEE PESC’06, pp. 1-6, 2006.
[48]Q. Hu and Z. Lu, “Design consideration of a novel digital bidirectional constant current source used in hybrid electric vehicle,” IEEE IPEMC’06, pp. 1-6, 2006.
[49]N. K. Poon, B. M. H. Pong and C. K. Tse, “A constant-power battery charger with inherent soft switching and power factor correction,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1262-1269, 2003.
[50]W. Qiu and Z. Qiu, “Design for symmetrical management of storage battery expert system based on single battery,” IEEE ICMA’06, pp. 1141-1146, 2006.
[51]B. Y. Chen, C. C. Hsu and Y. S. Lai, “Novel current limitation technique without current feedback for digital-controlled battery charger in UPS applications,” IEEE ECCE’10, pp. 4351-4355, 2010.
[52]F. Lima, J. N. Ramalho, D. Tavares, J. Duarte, C. Albuquerque, T. Marques, A. Geraldes, A. Casimiro, P. Renkema, G. J. Been and W. Groeneveld, “A novel universal battery charger for Ni-Cd, Ni-MH, Li-ion and Li-polymer,” IEEE ESSCIRT’03, pp. 209-212, 2003.
[53]R. Shen, R. Chen and Z. Huang, “High-precision battery test system based on 24-bit ADC,” IEEE ICEMI’09, pp. 1-867 - 1-872, 2009.
[54]L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 398-405, 2007.
[55]L. R. Chen, R. C. Hsu, C. S. Liu, W. Z. Yen, N. Y. Chu and Y. L. Lin, “A variable frequency pulse charge strategy for Li-ion battery,” IEEE ISIE’05, pp. 995-1000, 2005.
[56]L. R. Chen, “Design of duty-varied voltage pulse charger for improving Li-ion battery-charging response,” IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 480-487, 2009.
[57]L. R. Chen, C. C. Huang and S. L. Wu, “A design of a Li-ion battery duty-varied pulse charger,” IEEE IECON’07, pp. 402-407, 2007.
[58]L. R. Chen, J. J. Chen, N. Y. Chu, and G. Y. Han, “Current-pumped battery charger,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2482-2488, 2008.
[59]M. Gonzalez, M. A. Perez, J. C. Campo and F. J. Ferrero, “Accurate detection algorithm of battery full-capacity under fast-charge,” IEEE IMTC’98, pp. 755-759, 1998.
[60]K. C. Tseng, T. J. Liang, J. E Chen and M. T. Chang, “High frequency positive/negative pulse charger with power factor correction,” IEEE PSEC’02, pp. 671-675, 2002.
[61]W. S. Jwo and W. L. Chien, “Design and implementation of a charge equalization using positive/negative pulse charger,” IEEE IAS’07, pp. 1076-1081, 2007.
[62]Y. S. Chu, R. Y. Chen, T. J. Liang, S . K. Changchien and J. F. Chen, “Positive/negative pulse battery charger with energy feedback and power factor correction,” IEEE APEC’05, pp. 986-990, 2005.
[63]A. R. Prasad, P. D. Ziogas and S. Manias, “A novel passive waveshaping method for single-phase diode rectifiers,” IEEE Transactions on Industrial Electronics, vol. 37, no. 6, pp. 521-530, 1990.
[64]C. S. Moo, H. L. Cheng and S. J. Guo, “Designing passive LC filters with contour maps,” IEEE PEDS’97, pp. 834-838, 1997.
[65]C. A. Cannesin and I. Barbi, “Analysis and design of constant-frequency peak-current controlled high-power-factor boost rectifier with slope compensation,” IEEE APEC’96, pp. 807-813, 1996.
[66]O. Carranza, E. Fiqueres, G. Garcera, L. G. Gonzalez and F. Gonzalez-Espin, “Peak current mode control of a boost rectifier with low distortion of the input current for wind power systems based on permanent magnet synchronous generators,” IEEE EPE’09, pp. 1-10, 2009.
[67]D. G. Lamar, J. Sebastian, M. Arias, M. Rodrigqez and A. Rodrigqez, “Using standard peak-current-mode controllers in high-power-factor rectifiers based on up-down switching converters,” IEEE PESC’08, pp. 1157-1163, 2008.
[68]G. Spiazzi and J. A. Pomilio, ”Interaction between EMI filter and power factor preregulators with average current control: analysis and design considerations,” IEEE APEC’99, pp. 382-388, 1999.
[69]R. Ghosh and G. Narayanan, ”Input voltage sensorless average current control technique for high-power-factor boost rectifiers operated in discontinuous conduction mode,” IEEE APEC’05, pp. 1145-1150, 2005.
[70]J. Luo, M. K. Jeoh and H. C. Huang, ” A new continuous conduction mode PFC IC with average current mode control,” IEEE PEDS’03, pp. 1110-1114, 2003.
[71]B. S. Mereuta, M. Lucanu, R. Chiper and C. V. Pavel, “PFC with inductor current hysteretic control and voltage fuzzy controller for the output voltage,” IEEE ISSCS’07, pp. 1-4, 2007.
[72]W. Dai, B. Wang and H. Yang, ”A hysteretic current controller for active power filter with constant frequency,” IEEE CIMSA’09, pp. 86-90, 2009.
[73]R. Joost and R. Salomon, “Advantages of FPGA-based multiprocessor systems in industrial applications,” IEEE IECON’05, pp. 445-450, 2005.
[74]K. I. Hwu and Y. T. Yau, “Feed forward compensation for one-comparator counter-based PWM control based on FPGA,” IEEE IECON’07, pp. 2015-2019, 2007.
[75]K. I. Hwu and Y. T. Yau, “Improvement of one-comparator counter-based PWM control by applying a sawtoothed wave injection method,” IEEE APEC’07, pp. 478-481, 2007.
[76]A. Hren, J. Korelic and M. Milanovic, “RC-RCD clamp circuit for ringing losses reduction in a flyback converter,” IEEE Transactions on Analog and Digital Signal Processing, vol. 53, no. 5, pp. 369-373, 2006.
[77]N. Rouger, J. C. Crebier and S. Catellani, “High-efficiency and fully integrated self-powering technique for intelligent switch-based flyback converters,” IEEE Transactions on Industry Applications, vol. 44, no. 3, pp. 826-835, 2008.
[78]Y. B. Weng and Y. Xing, “A dual-transformer flyback converter in critical conduction mode,” IEEE IPEMC’04, vol. 3, pp. 1074-1079, 2004.
[79]Weiming Lin, HuiQi Song, Zeng Yi Lu and G. Hua, “A high efficiency gate-driving scheme of synchronous rectifiers in wide-input-voltage-range CCM flyback converter,” IEEE PESC’06, pp. 1-6, 2006.
[80]Wuhua Li, Jianjiang Shi, Min Hu and Xiangning He, “An isolated interleaved active-clamp ZVT flyback-boost converter with coupled inductors,” IEEE EPE’07, pp. 1-9, 2007.
[81]J. Cho, J. Kwon and S. Han, “Asymmetrical ZVS PWM flyback converter with synchronous rectification for ink-jet printer,” IEEE PESC’06, pp. 1-7, 2006.
[82]Y. Xi, P. K. Jain, G. Joos and Y. F. Liu, “An improved zero voltage switching flyback converter topology,” IEEE PESC’98, vol. 2, pp. 923-929, 1998.
[83]S. Y. Tseng, C. T. Hsieh and H. C. Lin, “Active clamp interleaved flyback converter with single-capacitor turn-off snubber for stunning poultry applications,” IEEE PEDS’07, pp. 1401-1408, 2007.
[84]C. Y. Inaba, Y. Konishi, H. Tanimatsu, K. Hirachi and M. Nakaoka, “Soft switching PWM DC-DC flyback converter with transformer-assisted pulse current regenerative passive resonant snubbers,” IEEE PEDS’03, vol. 2, pp. 882-887, 2003.
[85]A. Bakkali, P. Alou, J. A. Oliver and J. A. Cobos, “Average modeling and analysis of a flyback with active clamp topology based on a very simple converter with energy regenerative snubber,” IEEE APEC’08, pp. 796-800, 2008.
[86]C. S. Liao, Smedley and M. Keyue, “Design of high efficiency flyback transformer,” IEEE APEC’07, pp. 500-506, 2007.
[87]K. I. Hwu and Y. T. Yau, “Powering LED using high-efficiency SR flyback converter,”IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 376-386, 2011.
[88]Claudio Adragna, “Design equations of high-power-factor flyback converters based on the L6561”, ST AN1059 L6561 APPLICATION NOTE, 2003.
[89]W. Zhang, G. Feng, Y. F. Liu and B. Wu, “A digital power factor correction (PFC) control strategy optimized for DSP,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474-1485, 2004.
[90]W. Zhang, G. Feng, Y. F. Liu and B. Wu, “New digital control method for power factor correction,” IEEE Transactions on Power Electronics, vol. 53, no. 3, pp. 987-990, 2006.
[91]D. Liu and H. Li, “Design and implementation of a DSP based digital controller for a dual half bridge isolated bi-directional DC-DC converter,” IEEE APEC’06, pp. 695-699, 2006.
[92]M. M. Islam, D. R. Allee, S. Konasani and A. A. Rodriguez, “A low-cost digital controller for a switching DC converter with improved voltage regulation,” IEEE Power Electronics Letters, vol. 2, no. 4, pp. 121-124, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊