跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王鵬翔
研究生(外文):Peng-Hsiang Wang
論文名稱:應用量子基因演算法求解火力機組排程
論文名稱(外文):Application of Quantum Genetic Algorithm for Thermal Generation Unit Commitment
指導教授:曹大鵬曹大鵬引用關係
口試委員:黃培華林惠民曾國雄周至如
口試日期:2011-07-18
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:機組排程量子基因演算法
外文關鍵詞:Unit CommitmentQuantum Genetic Algorithm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:332
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前台灣的電力系統以火力機組為主,以2009年為例,台灣電力公司全系統「發購電量」,火力發電約佔75.3%,在台灣電力公司自有發電的部分,也還佔有50%,對此數量龐大的運轉機組而言,適當的機組發電排程,所節省之發電成本也是相當可觀。所謂機組排程是根據事先之負載預測,在滿足各項限制條件下,系統應上機、下機的機組,使得排程的總成本降至最低。本論文乃融合量子演算法及基因演算法,來實現一種新的演算法,名為「量子基因演算法」(Quantum Genetic Algorithm),採用量子機率向量的編碼方式,同時使用量子位元、量子疊加狀態的思想,量子狀態疊加的特性能使排列更多元化,機率表達的特性,是將解的狀態以一定的機率表達出來,有效提高最佳解搜索能力。本論文最後以三個案例作分析,分別以六機組、十機組、二十機組作二十四小時負載機組排程,並且和傳統動態規劃法(Dynamic Programming, DP)、標準基因演算法(Standard Genetic Algorithm, SGA)作比較,模擬結果印證量子基因演算可以達到較低的發電成本,因而適合將此方法使用在求解最佳火力機組排程問題。

Nowadays, Taiwan electric power energy is mainly generated by thermal units. For example, the energy production and purchased for Taiwan Power Company in 2009, the total electric power production by thermal unit is about 75.3% in which 50% is generated by Taiwan Power Company itself and 25.3% by others. For this large number of thermal units currently operating in the power system, optimal unit and commitment schedules to save the total cost is significant importance.The unit commitment is involving different constraints, for example the unit start-up and shut-down schedules to meet the power demand at minimum cost. The other necessary constraints to satisfy the commitment schedules are also required. This thesis combines Quantum Algorithm and Genetic Algorithm to present a new algorithm, called Quantum Genetic Algorithm (QGA). The Quantum Genetic Algorithm uses the coding method of quantum probability vector, and also use the quantum bit and quantum superposition at the same time. The superposition can let it express more state. The probability expression characteristic can be expresses the solution state by certain probability. It can raise the ability of optimal solution.Three research cases have been studied and analyzed in the thesis. The optimal commitment for these three cases which involves six, ten and twenty thermal units in the system have been carried out to find the best operation cost over 24-hour period. The result which compare with other methods, i.e. Dynamic Programming and Genetic Algorithm show Quantum Genetic Algorithm more useful and efficient in short-term unit commitment.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1研究動機與目的 1
1.2相關文獻探討 2
1.3研究方法 3
1.4論文架構概述 4
第二章 機組排程問題及傳統解法 5
2.1前言 5
2.2目標函數 5
2.3機組限制條件 7
2.4傳統拉格朗日法 11
2.4.1傳統拉格朗日法之流程 11
2.5 優先順序表列法 14
2.6 動態規劃法 16
第三章 本文採用之演算法與模擬軟體介紹 18
3.1模擬軟體介紹 18
3.2基因演算法 18
3.2.1引言 18
3.2.2基因演算法之執行步驟 19
3.2.3基因演算法如何避免陷入區域最佳解 26
3.3量子基因演算法 27
3.3.1引言 27
3.3.2量子基因演算法之執行步驟 28
3.4利用量子基因演算法求解機組排程之應用 36
第四章 模擬結果和比較 39
4.1前言 39
4.2模擬案例一 39
4.3模擬案例二 45
4.4模擬案例三 51
4.5模擬案例總結 58
第五章 結論與未來發展方向 59
5.1結論 59
5.2未來發展方向 60
參考文獻 61



[1]R. M. Burns and C. A. Gibson, ”Optimization of Priority Lists for a Unit Commitment Program,” Paper A 75 453-1 Presented at IEEE/PES Summer Meeting, 1975.
[2]W. L. Syder, H. D. Powell., and J. C. Rayburn, ” Dynamic Programming Approach to Unit Commitment, ” IEEE Trans .On Power System ,Vol.PWRS-2, NO. 2, May 1987, pp. 339-348.
[3]P. G. Lowery, “Generation Unit Commitment by Dynamic Programming,” IEEE Trans. On Power Systems Vol. 102, No. 3, 1983, pp. 1218-1225
[4]A. I. Cohen and M. Yoshimura, “A branch-and-bound algorithm for unit commitment,” IEEE Trans. on Power Systems, PAS-102 1983, pp. 444 – 451.
[5]蘇木春、張孝德編,類神經網路、模糊系統、及基因演算法則,全華科技圖 書公司,2004,10-2-10-25頁。
[6]柯志諭,類神經網路在火力機組選定之應用,國立台灣工業技術學院,電機工程所碩士論文,台北,1994。
[7]H. Sasaki, M. Watanabe, and R. Yokoyama, “A Solution Method of Unit Commitment by Artificial Neural Networks,” IEEE Trans. on Power Systems, Vol. 7, No. 3, 1992, pp.974-981.
[8]X. Ma, A. A. El-Keib, R. E. Smith and H. Ma, “A Genetic Algorithm Based Approach to Thermal Unit Commitment of Electric Power System,” EPSR, Vol. 34, 1995, pp. 29-36.
[9]李昌庭,應用基因演算法進行獨立電力系統短期發電排程,碩士論文,中原大學,桃園,2003。
[10]D. Dasgutpa, and D. R. McGregor,“Thermal Unit Commitment Using Genetic Algorithm,” IEE Proc. Part C, Vol. 3, 141(5), 1994, pp. 459-465
[11]K. S. Swarup and S. Yamashiro, “A genetic algorithm approach to generator unit commitment,” Electrical Power and Energy Syst, NO.25, 2003, pp 679-687.
[12]S. A. Kazarlis, A. G. Bakirzis, and V. Petridis, “A genetic algorithm solution to the unit commitment problem, ” IEEE Trans. On Power System, vol. 11, No. 1, February 1996, pp.83-92.
[13]F. Zhuang and F. D. Galiana, “Unit Commitment by Simulated Annealing,” IEEE Trans on Power Systems, PWRS-5, 1990, pp.311-317.
[14]廖國清、曹大鵬:「以混合免疫演算法和遺傳演算法作短期火力機組排程」,中華民國第二十四屆電力工程研討會,Dec. 12-13,2003,Taiwan,pp.1411-1415。
[15]張振松,「結合基因演算法和模擬退火法在機組排程決策之應用」,資訊管理展望,第7 卷,第2 期,民國94 年,113-115頁。
[16]林士煥、沈鎮南、凌拯民、張原彰、黃昆松、黃川桂,電力系統分析,高立圖書,第491-556頁。
[17]廖國清,最佳演算法應用於負載預測及機組排程問題,博士論文,國立中山大學,高雄,2003。
[18]張振松,「進化規劃法在經濟調度之應用」,國立空中大學管理與資訊學系管理與資訊學報,民94,10 期,143-169 頁。
[19]G.S.Sailesh Babu, D.B. Das and C. Patvardhan, “Real Parameter Quantum Evolutionary Algorithm for Economic Load Dispatch,” IET Proc.-Gener. Transm. Distrib., Vol. 2,Issuel 1, 2008, pp. 22-31.
[20]D.J. Tylavsky, G.T. Heydt, “Quantum Computing in Power System Simulation,” IEEE Power Engineering Society General Meeting 2003, Vol. 2, 2003, pp. 13-17.
[21]J. C. Lee, W. M. Lin, G. C. Liao and T. P. Tsao, ”Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including windpower system,” International Journal of Electrical Power & Energy Systems, Vol. 33, N0. 2, February 2011, pp. 189-197
[22]凃嘉勝,蟑螂演算法的發展與應用,碩士論文,正修科技大學電機工程所,高雄,2007。
[23]莊景勝,線性整數規劃與拉式鬆弛法求解火力機組排程之分析比較,碩士論文,國立中正大學電機工程所,嘉義,2004。
[24]A.J. Wood and B.F. Wollenberg, Power Generation Operation and Control, A Wiley-Interscience Publication, 1996, pp. 29-130.
[25]A. G. Bakirzis, and P. S. Dokopoulos, “Short term generation scheduling in a small autonomous system with unconventional energy sources,” IEEE Trans.Power System, vol. 3, no. 3, August 1988, pp. 1230-1236.
[26]K. Aoki and T. Satoh, “New algorithms for classic economic load dispatch,”IEEE Trans. on Power Apparatus and Systems, vol. PAS-103, no.6, 1984, pp. 1423-1431.
[27]S. Virmani, E.C Adrian,. K. Imhof, and S. Mukherjee, “Implementation of aLagrangian Relaxation Based Unit Commitment Problem,”IEEE Trans. On Power Systems, Vol.4, No.4, 1989, pp.1373-1380.
[28]C. Wang and S.M. Shahidehpour, “Effects of Ramp-Rate Limits on UnitCommitment and Economic Dispatch,”IEEE Trans. on Power Systems, Vol.8, No.3, 1993, pp.1341-1357.
[29]S. Vemuri and L. Lemonidis, “Fuel Constrained Unit Commitment,”IEEE Trans. on Power Systems, Vol.7, No.1, 1992, pp410-415.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top