[1]R. M. Burns and C. A. Gibson, ”Optimization of Priority Lists for a Unit Commitment Program,” Paper A 75 453-1 Presented at IEEE/PES Summer Meeting, 1975.
[2]W. L. Syder, H. D. Powell., and J. C. Rayburn, ” Dynamic Programming Approach to Unit Commitment, ” IEEE Trans .On Power System ,Vol.PWRS-2, NO. 2, May 1987, pp. 339-348.
[3]P. G. Lowery, “Generation Unit Commitment by Dynamic Programming,” IEEE Trans. On Power Systems Vol. 102, No. 3, 1983, pp. 1218-1225
[4]A. I. Cohen and M. Yoshimura, “A branch-and-bound algorithm for unit commitment,” IEEE Trans. on Power Systems, PAS-102 1983, pp. 444 – 451.
[5]蘇木春、張孝德編,類神經網路、模糊系統、及基因演算法則,全華科技圖 書公司,2004,10-2-10-25頁。
[6]柯志諭,類神經網路在火力機組選定之應用,國立台灣工業技術學院,電機工程所碩士論文,台北,1994。[7]H. Sasaki, M. Watanabe, and R. Yokoyama, “A Solution Method of Unit Commitment by Artificial Neural Networks,” IEEE Trans. on Power Systems, Vol. 7, No. 3, 1992, pp.974-981.
[8]X. Ma, A. A. El-Keib, R. E. Smith and H. Ma, “A Genetic Algorithm Based Approach to Thermal Unit Commitment of Electric Power System,” EPSR, Vol. 34, 1995, pp. 29-36.
[9]李昌庭,應用基因演算法進行獨立電力系統短期發電排程,碩士論文,中原大學,桃園,2003。[10]D. Dasgutpa, and D. R. McGregor,“Thermal Unit Commitment Using Genetic Algorithm,” IEE Proc. Part C, Vol. 3, 141(5), 1994, pp. 459-465
[11]K. S. Swarup and S. Yamashiro, “A genetic algorithm approach to generator unit commitment,” Electrical Power and Energy Syst, NO.25, 2003, pp 679-687.
[12]S. A. Kazarlis, A. G. Bakirzis, and V. Petridis, “A genetic algorithm solution to the unit commitment problem, ” IEEE Trans. On Power System, vol. 11, No. 1, February 1996, pp.83-92.
[13]F. Zhuang and F. D. Galiana, “Unit Commitment by Simulated Annealing,” IEEE Trans on Power Systems, PWRS-5, 1990, pp.311-317.
[14]廖國清、曹大鵬:「以混合免疫演算法和遺傳演算法作短期火力機組排程」,中華民國第二十四屆電力工程研討會,Dec. 12-13,2003,Taiwan,pp.1411-1415。
[15]張振松,「結合基因演算法和模擬退火法在機組排程決策之應用」,資訊管理展望,第7 卷,第2 期,民國94 年,113-115頁。[16]林士煥、沈鎮南、凌拯民、張原彰、黃昆松、黃川桂,電力系統分析,高立圖書,第491-556頁。
[17]廖國清,最佳演算法應用於負載預測及機組排程問題,博士論文,國立中山大學,高雄,2003。[18]張振松,「進化規劃法在經濟調度之應用」,國立空中大學管理與資訊學系管理與資訊學報,民94,10 期,143-169 頁。[19]G.S.Sailesh Babu, D.B. Das and C. Patvardhan, “Real Parameter Quantum Evolutionary Algorithm for Economic Load Dispatch,” IET Proc.-Gener. Transm. Distrib., Vol. 2,Issuel 1, 2008, pp. 22-31.
[20]D.J. Tylavsky, G.T. Heydt, “Quantum Computing in Power System Simulation,” IEEE Power Engineering Society General Meeting 2003, Vol. 2, 2003, pp. 13-17.
[21]J. C. Lee, W. M. Lin, G. C. Liao and T. P. Tsao, ”Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including windpower system,” International Journal of Electrical Power & Energy Systems, Vol. 33, N0. 2, February 2011, pp. 189-197
[22]凃嘉勝,蟑螂演算法的發展與應用,碩士論文,正修科技大學電機工程所,高雄,2007。[23]莊景勝,線性整數規劃與拉式鬆弛法求解火力機組排程之分析比較,碩士論文,國立中正大學電機工程所,嘉義,2004。[24]A.J. Wood and B.F. Wollenberg, Power Generation Operation and Control, A Wiley-Interscience Publication, 1996, pp. 29-130.
[25]A. G. Bakirzis, and P. S. Dokopoulos, “Short term generation scheduling in a small autonomous system with unconventional energy sources,” IEEE Trans.Power System, vol. 3, no. 3, August 1988, pp. 1230-1236.
[26]K. Aoki and T. Satoh, “New algorithms for classic economic load dispatch,”IEEE Trans. on Power Apparatus and Systems, vol. PAS-103, no.6, 1984, pp. 1423-1431.
[27]S. Virmani, E.C Adrian,. K. Imhof, and S. Mukherjee, “Implementation of aLagrangian Relaxation Based Unit Commitment Problem,”IEEE Trans. On Power Systems, Vol.4, No.4, 1989, pp.1373-1380.
[28]C. Wang and S.M. Shahidehpour, “Effects of Ramp-Rate Limits on UnitCommitment and Economic Dispatch,”IEEE Trans. on Power Systems, Vol.8, No.3, 1993, pp.1341-1357.
[29]S. Vemuri and L. Lemonidis, “Fuel Constrained Unit Commitment,”IEEE Trans. on Power Systems, Vol.7, No.1, 1992, pp410-415.