跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 10:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉子涵
研究生(外文):Tzu-Han Yeh
論文名稱:超導體故障限流器於電力系統穩定度之探討
論文名稱(外文):Studies of Power System Stability with Superconducting Fault Current Limiters
指導教授:曾國雄曾國雄引用關係俞齊山俞齊山引用關係
口試委員:李清吟陳文輝陳昭榮
口試日期:2011-01-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系優質電力產業研發專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:103
中文關鍵詞:超導體故障限流器等面積理論電力系統穩定度故障保護
外文關鍵詞:Superconducting Fault Current Limiter(SFCL)Equal-Area CriterionPower System StabilityFault Protection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年由於超導體故障限流器(Superconducting Fault Current Limiters, SFCL)的發展,已有許多文獻研究其限流能力以及所帶來之貢獻。然而超導體故障限流器在加入電力系統之後,亦可能對電力系統穩定度造成影響。有鑑於此,本文從各種角度探討SFCL對電力系統穩定度之影響。本論文利用MATLAB/SIMULINK建立SFCL之可變電阻模型,並將其適當設計之後套用至單機無限匯流排( Single Machine Infinite Bus, SMIB )、雙線雙機、雙區四機等不同的電力系統以進行討論。本文藉由等面積理論與時域模擬的分析以探討SFCL對於電力系統暫態穩定度的影響。此外,本文亦討論SFCL對於傳統的感應型風力發電機組於系統故障時的影響。由模擬結果觀察,SFCL在系統發生短路故障時,確實可提供系統有效的限流能力。此外,SFCL之投入對於電力系統之暫態穩定度也有顯著的改善。本文最後亦對於含有風力發電機之系統在安裝SFCL時提出建議。

Along with the significant developments of SFCL in recent years, there are many articles investigating the current limitation capabilities and contributions of SFCL. However, a SFCL may also introduce impacts on power system stabilities. Accordingly, this thesis considers different viewpoints to discuss the influences of SFCLs on a power system. This thesis uses MATLAB/SIMULINK to build a SFCL variable-resistance model and then applies the developed model to various power systems after proper adjusting its parameters. The comprehensive discussions in this thesis include a single machine infinite bus system, a system with two synchronous generators and two parallel transmission lines, and a system with four synchronous generators separated by two parallel transmission lines. The effects of SFCL on the transient stability of a power system are analyzed by the equal-area theory and time-domain simulations. Besides, the effects of SFCL on a traditional wind turbine induction generator in a fault period are also considered. In considering simulation results, a SFCL is able to limit fault currents in a fault period. Moreover, adopting a SFCL can contribute a significant improvement on the transient stability of power systems as well. Finally, some suggestions for using a SFCL on a power system with wind turbine generators are also given.

摘 要 I
ABSTRACT II
致謝 IV
目 錄 V
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 2
1.3 研究步驟 3
1.4 論文內容簡介 4
第二章 超導體故障限流器 5
2.1 前言 5
2.2限制故障電流的方法 5
2.3 超導體限流器簡介 9
2.4 電感性超導體故障限流器 13
2.5 電阻性超導體故障限流器 16
第三章 穩定度分析 23
3.1 前言 23
3.2 搖擺方程式與等面積理論 23
3.3 SFCL對於穩定度影響之探討 29
3.4 電阻性SFCL參數設計 31
3.4.1 考慮限流效果之SFCL阻值設計 32
3.4.2 考慮穩定度之SFCL阻值設計 34
第四章 模擬驗證 37
4.1 前言 37
4.2 SFCL之模組建立 37
4.3 SFCL之限流模擬討論 39
4.3.1 模擬系統建構 39
4.3.2 模擬結果討論 40
4.4 SFCL之穩定度討論 – 單機無限匯流排案例 46
4.4.1 案例一模擬系統建構 46
4.4.2 案例一模擬結果討論 47
4.5 SFCL之穩定度討論 – 雙線雙機案例 54
4.5.1 案例二模擬系統建構 54
4.5.2 案例二模擬結果討論 55
4.6 SFCL之穩定度討論 – 雙區四機案例 60
4.6.1 案例三模擬系統建構 60
4.6.2 案例三模擬結果討論 63
4.7 SFCL之穩定度討論 – 雙區三機加一風機案例 72
4.7.1案例四模擬系統建構 73
4.7.2 案例四模擬結果討論 76
4.8 綜合討論 94
第五章 結論 97
5.1 結論 97
5.2 未來研究方向 98
參考文獻 99


[1]J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: Operation and modeling,” IEEE Trans. Ind. Electron., vol. 55, no. 7, July 2008 , pp. 2752–2758.
[2]G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli, “Reliability issues in photovoltaic power processing systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, July 2008, pp. 2569–2580.
[3]全國法規資料庫,再生能源發展條例,民國98年7月8日。
[4]行政院經濟建設委員會,發展檢溫產業之潛力及其對總體經濟之影響,民95年12月。
[5]行政院國家科學委員會,”零電阻時代的超導陶瓷”, http://web1.nsc.gov.tw/ct.aspx?xItem=8021&ctNode=40&mp=1,3/8 2004
[6]K. Tekletsadik, M. P. Saravolac, and A. Rowley, “Development of a 7.5 MVA superconducting fault current limiter,” IEEE Trans. on Appl. Supercond., vol. 9, no. 2, June 1999, pp. 672–675.
[7]M. Sjostrom, R. Cherkaoui, and B. Dutoit, “Enhancement of power system transient stability using superconducting fault current limiters,” IEEE Trans. Appl. Supercond., vol. 9, no. 2, June 1999, pp.1328–1330.
[8]V. Sokolovsky, V. Meerovich, I. Vajda, and V. Beilin. “Superconducting FCL: Design and Application,” IEEE Trans. on Appl. Supercond ., vol. 14, no. 3, September 2004, pp.1890–1900.
[9]L. Kovalsky, X. Yuan, K. Tekletsadik, A. Keri, J. Bock, and F. Breuer, “Applications of Superconducting Fault Current Limiters in Electric Power Transmission Systems,” IEEE Trans. on Appl. Supercond., vol. 15, no. 2, June 2005, pp. 2130–2133.
[10]A. T. Rowley, F. C. R. Wroe, M. P. Saravolac, K. Tekletsadik, J. Hancox, D. R. Watson, J. E. Evetts, A. Kursumovic, and A. Campbell, “Development of high Tc superconducting elements for a novel design of fault current limiter,” EUCAS''97, 1997.
[11]M. P. Saravolac, K. Tekletsadik, and A. T. Rowley, “High Temperature Superconducting Current Limiting Series Reactors,” CIGRE session - 1998, 1998.
[12]W. Paul, M. Lakner, J. Rhyner, P. Unternahrer, Th. Baumann, M. Chen, L. Widenhorn, and A. Guerig, “Test of 1.2 MVA High Tc Superconducting Fault Current Limiter,” EUCAS''97, 1997.
[13]V. Sokolovsky, V. Meerovich , A. Gyore , I. Vajda, “Transient stability of a power system with superconducting fault current limiters,” Electrical Engineering Periodica Polytechnica 2007, May 2007, pp. 2007-1–2.01.
[14] 中興大學物理系,”麥斯納效應”, http://experiment.phys.nchu.edu.tw/device/exp35.html,7/30 2009
[15]M. Noe and M. Steurer, “High-temperature superconductor fault current limiters: concepts, applications, and development status,” Superconducting Science Technology, vol. 20, no. 3, 2007, pp. 15–29.
[16]Innopower Superconductor Cable Co., Ltd, http://www.innopower.com/english/product.htm ,2002
[17]Nexans Global expert in cables and cabling systems, “Nexans supplies innovative Superconducting Fault Current Limiter to Applied Superconductor Ltd”,http://www.nexans.com/eservice/Corporate-en/navigatepub_142482_-20191_297_40_2579/Nexans_supplies_innovative_Superconducting_Fault_C.html , 2/26 2009
[18]R. F. Giese and M. Runde, “Assessment study of superconducting faultcurrent limiters operating at 77 K,” IEEE Trans. Power Delivery, vol. 8, July 1993, pp. 1138–1147.
[19]R. F. Giese, Introduction to FCL’s, Jerusalem, Israel, April 1995, pp. 13–90.
[20]W. Paul and M. Chen, “Superconducting control for surge currents,” IEEE Spectr., vol. 35, May 1998, pp. 49–54.
[21]W. Paul, M. Lakner, J. Rhyner, P. Unternahrer, T. Baumann, M. Chen, L. Windenhorn, and A. Guerig, “Test of a 1.2 MVA high-Tc superconducting fault current limiter,” in Inst. Physica C, vol. 158, 1997, pp. 1173–1178.
[22]V. Sokolovsky, V. Meerovich, G. Grader, and G. Shter, “Experimental investigation of current-limiting device model based on high-Tc superconductors,” Physica C, vol. 209, 1993, pp. 277–280.
[23]Y. N. Vershinin, V. M. Meerovich, I. E. Naumkin, N. L. Novikov, and V. L. Sokolovsky, “A comparative analysis of nonlinear reactors with shields and high-temperature (about 90 K) superconductors,” Elec. Technol. USSR (UK), no. 1, January 1989, pp. 1–9.
[24]V. Sokolovsky, V. Meerovich, V. Beilin, and I. Vajda, “Application of an HTS thin film switching element in the inductive current limiter,” Physica C, vol. 386, 2003, pp. 480–484.
[25]V. Meerovich, V. Sokolovsky, S. Goren, A. B. Kozyrev, V. N. Osadchy, and E. K. Holmann, “Operation of hybrid current limiter based on high-Tc superconducting thin film,” IEEE Trans. Appl. Supercond., vol. 7, September 1997, pp. 3783–3790.
[26]R. G. Mints, “Normal zone in composites,” in Handbook of Appl. Supercond., B. Seeber, 1998, pp. 99–119.
[27]H. Jiang and C. P. Bean, “Losses in high temperature superconductors as a function of applied field and frequency,” IEEE Trans. Appl. Supercond., vol.2, no. 10–12, 1994, pp. 689–695.
[28]V. Meerovich, V. Sokolovsky, M. Gladstein, and S. Shtutina, “Quench development in thin inhomogeneous HTS film on sapphire substrate,” Physica C, vol. 366, 2002, pp. 291–298.
[29]S. Lee, C. Lee, T. Kuk Ko , and O. Hyun, “Stability Analysis of a Power System with Superconducting Fault Current Limiter Installed,” IEEE Trans. on Appl. Supercond., vol. 11, no. 1, March 2001, pp. 2098–2101.
[30]X. Granados, X. Obradors, T. Puig, E. Mendosa, V. Gomis, S. Pinol, L. Garcia-Tabares, and J. Calero, “Hybrid superconducting fault current limiter based on bulk melt textured YBaCuO ceramic composites,” IEEE Trans. Appl. Supercond., vol. 9, June 1999, pp. 1308–1311.
[31]T. Verhaege, P. F. Herrmann, C. Cottevieille, J. Bock, A. Wolff, G. Moulaert, H. C. Freyhardt, A. Usoskin, J. Lehtonen, J. Paasi, and M. Collet, “HTS materials for ac current transport and fault current limitation,” IEEE Trans. Appl. Supercond., vol. 11, March 2001, pp. 2503–2506.
[32]H. R. Kim, S. W. Yim, S. Y. Oh, S. D. Yoo, and O. B. Hyun, “Quench Development in Superconducting Fault Current Limiters Based on YBCO Films,” IEEE Trans. Appl. Supercond., vol. 19, no. 3, June 2009, pp. 1926–1929.
[33] J. J. Grainger, W. D. Stevenson, Power System Analysis, M. Hill, 1994.
[34]N. E. Reimann, R. Cherkaoui, B. Dutoit, D. Djukic, and G. Grasso,“Simulation of the transient response of a high-Tc superconducting current limiter inserted in an electrical distribution system,” IEEE Trans. Appl. Supercond., vol. 7, June 1997, pp. 836–839.
[35]V. Meerovich, V. Sokolovsky, G. Jung, and S. Goren, “Inductive superconducting current limiter: state of art and prospects,” in Appl. Supercond. 1995, Inst. Physica C, vol. 148, 1995, pp. 603–606.
[36]T. Hoshino, M. Nishikawa, K. M. Salim, I. Muta, and T. Nakamura,“Preliminary studies on characteristics of series-connected resistive type superconducting fault current limiter for system design, “ Physica C, vol. 354, 2001, pp. 120–124.
[37]K. Hongesombut, Y. Mitani, and K. Tsuji, “Optimal location assignment and design of superconducting fault current limiters applied to loop power systems,” IEEE Trans. on Appl. Supercond., vol. 13, Issue 2, Part 2, June 2003, pp. 1828 – 1831.
[38]Z. B. Du, Y. Zhang, L. Liu, and Y. X. Ni, “COI based frequency slow dynamics simulation of AC/DC interconnected power systems incorporating AGC,” IEEE Power Engineering Society General Meeting, PES, no. 4275597, 2007, pp. 1–7.
[39]R. Yongfeng, X. Hongyan, L. Jianlin, and H. Shuju, “Research on low voltage ride through of doubly-fed induction generator wind power system,” IITAW ''08 Proceedings of the 2008 International Symposium on Intelligent Information Technology Application Workshops, 2008, pp. 1117–1120.
[40]E.ON., Netzanschlussregeln Hochund Hochstspannung, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top