跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱昱宏
研究生(外文):Yu-Hong Ciou
論文名稱:面銑切削之切入角對加工面及刀刃之影響研究
論文名稱(外文):Investigation of Entrance Angle Effects on the Machined Surface and Tool Insert in Face Milling
指導教授:蔡哲雄蔡哲雄引用關係
口試委員:林盛勇葉賜旭
口試日期:2011-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:95
中文關鍵詞:面銑切削切入角銑削力表面粗度刀具磨耗刀具應力
外文關鍵詞:Face millingEntrance angleMilling forceSurface roughnessTool wearTool stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面銑切削是金屬切削中最常見的銑削加工之一,如何選擇面銑切削的切入角(entrance angle)是重要的對策,因為其對加工面品質及切削刀具壽命有重要影響。本研究目的將透過各種面銑切削操作之切入角條件探討銑削力、刀具磨耗情形、加工表面粗度及刀片產生的內應力,以說明面銑切削其切入角規劃的影響及重要性。比較面銑切入角的影響,包含有-20°、-10°、0°、30°、60°及75°六種切入角,及每一種切入角包含三種進給率及三種切削深度。面銑切削實驗之材料為球狀石墨鑄鐵FCD700,加工面30 mm寬 × 160 mm長,所有切削以面銑刀直徑100 mm進行,只安裝一片捨棄式刀片(材質為碳化鎢)。僅使用一片刀片可以避免銑削中刀具迴轉偏晃及刃與刃間的迴轉偏差之影響。所有切削實驗之切削速度及進給之使用則是適當參考刀具型錄。實驗結果發現,在切削力方面,當切入角接近0°時,刀具將會受到較大的水平作用力。也就是說,如果以較大的切入角或以大的負切入角切削(例如本文中的75°及-20°)則最大水平切削力可以降低,但其在一迴轉中實際切削時間比其他情況較長。在加工表面粗度之比較,顯示較佳的表面粗度是切入角75°及-20°者,由於切削紋路相對於較小切入角者密集。本文刀具磨耗實驗顯示刀腹磨耗最大為切入角75°者,而最小刀腹磨耗則為切入角30°者。最後,本文應用似力學法(mechanistic)面銑切削力模擬法能模擬預測面銑切削過程刀片承受的切線力、徑向力及軸向力,並應用此方法來模擬分析刀片應力分佈。結果顯示,以較大切入角切削的情況其主切刃產生的等效應力相對較大。

Face milling is one of the most common milling processes in metal cutting. How to select the entrance angle for face milling is an important scheme, because it affects the machined surface quality and the cutting tool life very much. The purpose of this study is to investigate the milling forces, tool wear, machined surface roughness, and the stresses induced in the tool insert under different entrance angles of face milling operations, and illustrate the influences and importance of entrance angles in face milling. To compare the effects in face milling, 6 different types of entrance angles, -20°, -10°, 0°, 30°, 60° and 75°, are included. And, there are 3 feedrates and 3 cutting depths for each entrance angle. The material used for face milling experiments is nodular cast iron FCD700 with machining surface of 30 mm (width) × 200 mm (length). The diameter of the face cutter is 100 mm, with only one tool insert installed (tungsten carbide), for all milling experiments. Using only one insert eliminates the influences of tool run-out and deviations among inserts during milling. All the milling speeds and tool feedrates used in present experiments were adequately referred to the tools catalog. The experimental results show the entrance angles that near zero bring to larger horizontal cutting forces acted on the face cutter during milling. It is to say, with larger entrance angle or larger minus entrance angle (such as 75° and -20° in present study), the maximum horizontal cutting forces will be reduced; however, duration of the real cutting time in one revolution will be longer. In comparison of machined surface roughness, it reveals better machined surface can be obtained by using larger entrance angles (or larger minus entrance angles) because of more densely cutting texture compared with small entrance angles. In the tool wear experiments, the milling condition of 75° entrance angle causes the maximum flank wear while 30° entrance angle causes the minimum in present study. Finally, the paper uses a mechanistic face milling force model to predict the tangential, radial, and axial forces acted on the tool insert during milling. By using the model, we can analyze the stress distribution in tool insert during milling for each cutting condition. The simulated results show that the face milling with larger entrance angle generates larger equivalent stress on the main cutting edge.

摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 3
1.4 論文架構 4
第二章 面銑切削原理 6
2.1 金屬切削原理 6
2.2 銑削原理 7
2.2.1 上銑法及下銑法 8
2.3 面銑刀 9
2.3.1 斜角 10
2.3.2 隅角 11
2.3.3 真斜角和切刃斜角 12
2.3.4 切入角 13
2.3.5 刀尖接觸的方式 15
2.4 刀具磨耗 18
2.4.1 刀腹磨耗 18
2.4.2 凹坑磨耗 18
2.4.3 剝離 19
2.5 表面粗糙度 19
2.6 刀具壽命 20
2.7 面銑刀刃的受力及應力 22
第三章 面銑切削實驗 26
3.1 實驗規劃 26
3.2 實驗設備 29
3.2.1 台灣麗偉CNC三軸加工中心機 29
3.2.2 實驗材料:球墨鑄鐵FCD700 30
3.2.3 面銑刀及捨棄式刀片規格 31
3.2.4 KISTLER 9257B動力計 33
3.2.5 訊號放大器、AD/DA卡及資料擷取軟體 34
3.2.6 T&S ConturoMatic T1粗糙度量測儀 36
3.2.7 KEYENCE數位顯微鏡 37
3.3 實驗步驟及程序 38
3.3.1 切削力量測實驗 38
3.3.2 表面粗糙度量測實驗 39
3.3.3 刀具磨耗量測實驗 39
第四章 實驗結果與討論 40
4.1 不同切入角對切削力之影響 40
4.2 表面粗糙度之比較 71
4.3 刀具磨耗之比較 75
4.4 刀刃受力及應力分析 81
第五章 結論及未來展望 91
5.1 結論 91
5.2 未來展望 92
參考文獻 93
作者簡介 95


[1]Takeuchi Y., Sakamoto M., “Analysis of Machining Error in Face Milling,” Proceedings of the 22nd International Machine Tool Design and Research Conference, 1981, pp. 153-158.
[2]F. Gu, S. N. Melkote, S. G. Kapoor, R. E. DeVor, “A Model for the Prediction of Surface Flatness in Face Milling,” Journal of Manufacturing Science and Engineering, 1997, pp. 476-484.
[3]Usui E., Hirota A., “Analytical Prediction of Three-Dimensional Cutting Process. Part 2: Chip Formation and Cutting Forces with Conventional Single-Point Tool,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY, Vol. 100, No. 2, 1978, pp. 229.
[4]Lin G. C. I., “Prediction of Cutting Forces and Chip Geometry in Oblique Machining from Flow Stress Properties and Cutting Conditions,” Int. J. Mach. Tool Des. Res., Vol. 18, 1978, pp. 117.
[5]Kir J. A., Anand D. K., McKindra C, “Matrix Representation and Prediction of Three-Dimensional Cutting Forces,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY, Vol. 99, No. 4, 1977, pp. 828.
[6]Pandey P. C., Shan H. S., “Analysis of Cutting Forces in Peripheral and Face Milling Operations,” Int. J. Prod. Res., Vol. 10, No. 4, 1972, pp. 379.
[7]Martellotti M. E., “An Analysis of the Milling Process,” Trans. ASME, Vol. 63, 1941, pp. 667.
[8]Martellotti M. E., “An Analysis of the Milling Process. Part II: Down Milling,” Trans. ASME, Vol. 67, 1945, pp. 233.
[9]Koenigsberger F., Sabberwal A. J. P., “Chip Section and Cutting Force during the Milling Operation,” Annals of the CIRP, 1960.
[10]Koenigsberger F., Sabberwal A. J. P., “An investigation into the Cutting Force Pulsations during Milling Operations,” Int. J. Mach. Tool Des, Res., Vol. 1, 1961, pp. 15.
[11]H. J. Fu, R. E. DeVor, S. G. Kapoor, “A Mechanistic Model for the Prediction of the Force System in Face Milling Operations,” Journal of Engineering for Industry, Vol. 106, 1984, pp. 81-88.
[12]S. Coromant, “Modern Metal Cutting,” Sandvik Coromant Technical Editorial Department, Tofters Tryckeri, 10 edn., Sweden, 1994, pp. 159.
[13]A. E. Diniz, J. C. Filho, “Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process,” Wear, Vol. 232, 1999, pp. 67-75.
[14]D. Ferraresi, “Metal Cutting,” Brazilian Metal Society, Brazil, 1972, pp. 71.
[15]精密加工百科,精密銑削專輯,三豐儀器股份有限公司,1990。
[16]洪良德,切削刀具學,全華科技圖書股份有限公司,2003。
[17]徐衡、段曉旭,數控銑床,化學工業出版社,2005。
[18]蕭旭烈,圖解式銑床之技術,大眾書局,1979。
[19]邱雲堯、陳佳萬等譯,機械製造,文京圖書有限公司,1998,第20-23頁。
[20]劉志剛、洪佑宗,面銑切削力的分析模式,國立臺北科技大學專題論文集,2000。
[21]T. Özel, T. Altan, “Process Simulation Using Finite Element Method ─ Prediction of Cutting Force, Tool Stresses and Temperatures in High-Speed Flat end milling,” International Journal of Machine Tools & Manufacture, Vol. 40, 2000, pp. 713-738.
[22]張印本、楊良太等,金屬材料對照手冊,全華圖書股份有限公司,2009,第506頁。
[23]徐永源譯,數控工具機,高立圖書有限公司,2002,第181-182頁。
[24]陳政億,球形端銑刀銑削斜面之切削力分析模式,碩士論文,國立臺北科技大學,臺北,2006。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top