跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑安
研究生(外文):Yo-An Chen
論文名稱:端銑刀側銑切削之動態應力分析
論文名稱(外文):Dynamic Stress Analysis of End Mill in Peripheral Milling
指導教授:蔡哲雄蔡哲雄引用關係
口試委員:徐瑞芳蔡定江
口試日期:2011-01-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:122
中文關鍵詞:端銑刀側銑切削動態應力分析疊加法有限元素分析
外文關鍵詞:End millPeripheral MillingDynamic stress analysisPrinciple of superpositionFinite element analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:556
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文應用有限元素分析套裝軟體分析端銑刀側銑切削過程之應力及位移變化。假設刀具為線性彈性材料。採用動態分析模式觀察銑刀斷續切削承受衝擊力過程有無振動行為及不穩定切削。由於端銑刀切刃為螺旋刃,並且隨著刀具的轉動角度位置而切削厚度(切削負荷)不同,使得模擬切削過程之刀具受力邊界條件設定複雜。因此本文採用疊加法原理(Principle of superposition)。將刀具在軸向切深中的螺旋刃沿軸向分成若干短刃(Short edge),就單一短刃切削過程的受力條件對刀具進行動態分析,然後再將各短刃的分析數值結果進行疊加,以獲得刀具實際切削過程的動態行為。
應用本文方法模擬直徑D = 6 mm之碳化鎢端銑刀切削鋁合金材料,徑向切深0.267 D,軸向切深為1.167 D,每刃進給0.04 mm,刀具轉速 600 rpm的中輕切削條件。分析結果顯示,切削過程在端銑刀軸向切深中沿螺旋刃邊緣的應力集中明顯,最大約900 MPa;而在刀端刀尖處的應力最高更高達約1450 MPa,值得注意。端銑刀順銑切削過程的位移響應以刀端刀尖點為例,分析結果顯示刀尖在刀具進給方向的撓曲位移最大到0.0095 mm左右;而刀尖在垂直進給方向的撓曲位移最大則到0.01 mm左右。顯示刀具切削時為彈離工件方向,此撓曲方向將造成讓切的尺寸誤差(Undercut);另外,刀尖在刀軸方向的位移最大則僅-0.003 mm左右,表示刀具切削過程沿刀軸方向有相當微小被拉長的情形。因此本切削條件對切削面之尺寸精度影響不大。在本模擬分析實例中,由位移響應情形可見整個的切削過程並無明顯的刀具振動現象,而在實際切削實驗中亦顯示切削穩定。本文主要是應用疊加法建構端銑刀切削之動態應力及位移分析模式,未來可進一步考量各種切削條件的穩定性分析等。


In this paper, an algorithm for analyzing dynamic stress and displacement of end mill cutter during peripheral milling process was developed. The cutter was idealized as a linear elastic material. Using dynamic analysis modeling can observe whether the tool chattering take place or not in the interrupted cutting of the end mill. Because of the cutting edge of the end mill is designed as a helical type, the chip load (or cutting force) of the cutting edge varied according to the tool rotation angle and axial position of cutting edge. In present study the principle of superposition was adopted to deal with the complicated load boundary conditions on helical cutting edge in peripheral milling. The helical cutting edge of the end mill was divided into several short edges for performing dynamic stress analysis of the end mill with only one short edge in load condition during one revolution of the tool. After performing the analysis of each load condition of short edge, the responses of end mill stress and displacement can be obtained by superposition.
Use present method to analyze stress and displacement responses of carbide end mill (with two flutes and diameter D = 6 mm) in cutting aluminum alloy. The cutting conditions are: radial depth of cut = 0.267D, axial depth of cut = 1.167D, feed per revolution per tooth = 0.04 mm and the tool rotation speed = 600 rpm. The results show that the serious stress concentration toward the cutting edge, which the maximum equivalent stress is up to 900 MPa. Worth to pay attention, particularly, at the end corner of the cutting edge, the maximum equivalent stress is up to about 1450 MPa. The analyzed results of the end mill displacement responses show that the maximum deflection at the corner of cutting edge is up to 0.0095 mm in the feed direction, and up to 0.01 mm in the direction perpendicular to feed direction. The latter deflection (perpendicular to feed direction) may cause dimensional error of the machined surface. Moreover; with present positive deflection will give an undercut dimensional error of the milling surface. In addition, the displacement of the end mill in tool-axis direction is only -0.003 mm (at the corner of cutting edge) for the maximal value during cutting. It reveals the end mill has very little extension during peripheral milling in present case study. The displacement response results reveal the peripheral milling which has a stable milling process in present cutting conditions and agrees with actual milling experiment.


目 錄
中文摘要………………………………………………………………………i
英文摘要………………………………………………………………………iii
誌謝……………………………………………………………………………v
目錄……………………………………………………………………………vi
表目錄…………………………………………………………………………viii
圖目錄…………………………………………………………………………ix
第一章 緒論…………………………………………………………………1
1.1 前言………………………………………………………………….1
1.2 文獻回顧…………………………………………………………….1
1.3 研究動機及目的…………………………………………………….3
1.4 論文架構…………………………………………………………….3
第二章 有限元素分析法基礎理論…………………………………………4
2.1 有限元素法基本概念……………………………………………….4
2.2 有限元素靜態線性分析理論……………………………………….6
2.3 有限元素動態分析理論…………………………………………….8
第三章 分析軟體簡介與疊加法應用..……………………………………12
3.1 COSMOSWorks有限元素分析軟體………………………………12
3.1.1 COSMOSWworks簡介………………….………………….12
3.1.2 FEA中求解的方法………………………………………….13
3.1.3 FEA中的邊界條件………………………………………….14
3.2 端銑刀應力分析測試.……………………………………………..16
3.2.1 問題描述……………………………………………………16
3.2.2 有限元素模型與元素收斂性………………………………16
3.2.3 結果比較與分析……………………………………………21
3.3 疊加法應用及驗證………………………………………………...23
3.3.1 疊加法應用說明……………………………………………23
3.3.2 疊加法測試一………………………………………………27
3.3.2.1 使用疊加法分析…………………………………...27
3.3.2.2 作用力同時施加—不使用疊加法...………………37
3.3.3疊加法測試二…………………………………….…………37
3.3.2.1第一分割刃施加作用力……………………………41
3.3.2.2第二分割刃施加作用力……………………………43
3.3.3.3分割刃1和分割刃2同時分析與疊加法結果比較
………………………………………………………45


第四章 端銑刀動態應力分析……………………………………………..48
4.1 端銑刀側銑切削力………………………………………………...48
4.2 端銑刀側銑應力及位移分析……………………………………...52
4.2.1 問題描述及作用力施加……………………………………51
4.2.2 有限元素分析模型…………………………………………54
4.2.3 側銑切削(Peripheral milling)各分割刃受力分析…………62
4.2.4 各分割刃應力位移疊加及討論……………………………93
4.2.5 端銑刀螺旋刃應力分析討論……………………………..109
第五章 結論與未來展望…………………………………………………116
5.1 結論……………………………………………………………….116
5.2 未來展望………………………………………………………….117
參考文獻……………………………………………………………………118
符號編彙……………………………………………………………………121


參考文獻
[1]W.A. Kline, R.E. DeVor, J.R. Lindberg, “The prediction of cutting forces in end milling with application to cornering cuts,” International Journal of Machine Tool Design and Research 22 ,1982, pp.7-22.
[2] J.W. Sutherland, R.E. DeVor, “An improvedmethod for cutting force and surface error prediction in flexible end milling systems,” Transactions of the ASME Journal of Engineering for Industry 108, 1986, pp.269-279.
[3] P. Lee, Y. Altintas, “Prediction of ball-end milling forces from orthogonal cutting data,” International Journal of Machine Tools and Manufacture 36 ,1996, pp.1059-1072.
[4]Janez Gradisek, Martin Kalveram, Klaus Weinert, “Mechanistic identification of specific force coefficients for a general end mill,” International Journal of Machine Tools and Manufacture 44 , 2004, pp.401-414.
[5] K.Y. Lee, H.M. Kim, S.S. Park, “A run-out measuring method using modeling and simulation in four-fluted end milling,” Journal of Materials Processing Technology, 187-188 , 2007, pp.207-211.
[6] Takashi Matsumura, Eiji Usui, “Predictive cutting force model in complex-shaped end milling based on minimum cutting energy,” International Journal of Machine Tools and Manufacture 50, 2010, pp.458-466.
[7]Tlusty, J., and Masood, Z., “Chipping and breakage of carbide tools,” Journal of Engineering for Industry, Vol. 100, 1978, pp.403-412.
[8]H. Chandrasekaran, T.A. Janardhan Reddy, V.C. Venkatesh, “On the Nature of Cyclic Stresses in the Tool Tip in Peripheral Milling and Their Implications on Tool Fracture,” CIRP Annals - Manufacturing Technology, Volume 31, Issue 1, 1982, pp. 85-89.
[9]H. Chandrasekaran, A. Thuvander, H. Wisell, “Modelling of tool stresses in peripheral milling,” CIRP Annals - Manufacturing Technology, 37/1/1988, pp. 41-44.
[10]Nemes, J.A., Asamoah-Attiah, S., Budak, E., Kops, L., ” Cutting Load Capacity of End Mills with Complex Geometry,” CIRP Annals - Manufacturing Technology, Volume: 50, Issue: 1, 2001, pp. 65-68.
[11]Puneet Tandon, Md. Rajik Khan “Three dimensional modeling and finite element simulation of a generic end mill,” Computer-Aided Design 41,2009, pp.106-114
[12]Balkrishna Rao, Chinmaya R. Dandekar, Yung C. Shin, “An experimental and numerical study on the face milling of Ti-6Al-4V alloy: Tool performance and surface integrity,” J. Materials Processing Technology, 211 ,2011, pp.294-304.
[13]趙騰倫,ABAQUS 6.6在機械工程中的應用,中國水利水電出版社,2007。
[14]戴文勝,鋁輪圈應力分佈改善與最佳化設計,碩士論文,大葉大學機械工程研究所,2006。
[15]華睿在線技術專刊,COSMOS有限元素分析理論基礎,http://www.docin.com/p-7338493.html。
[16]Bedford, Kenneth M.Liechti “Mechanics of materials ” Prentice Hall, pp.509-510.
[17]Tony Schmitz, Matthew Davies, Michael Kennedy “High-speed machining frequency response prediction for process optimization” National Institute of Standards and Technology. National Institute of Standards and Technology Automated Production Technology Division, pp.8-9.
[18]蔡哲雄、陳佑安、羅敏升、鄒旻君、宋健瑋,端銑刀不同螺旋角之側銑切削力模式研究,2010 精密機械與製造科技研討會,2010,A36-01,A36-02。

[19]陳志鏗、李春穎,COSMOS/Works 2006 應用解析-基礎篇,初版,高立圖書有限公司, 2007。
[20]實威科技股份有限公司,COSMOSWorks 電腦輔助工程分析 入門篇 Designer,全華圖書股份有限公司,2007。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top