跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王帥
研究生(外文):Shuai Wang
論文名稱:以微波電漿束化學氣相沉積系統於石英基材成長之類鑽碳薄膜的電磁性能
論文名稱(外文):Electromagnetic Performance of Diamond Like Carbon Films Grown on Quartz Substrates Using the Microwave Plasma Jet Chemical Vapor Deposition System
指導教授:蘇春熺
口試委員:許華倚蘇程裕
口試日期:2011-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:77
中文關鍵詞:原子力顯微鏡四點探針電磁屏蔽效應類鑽碳
外文關鍵詞:AFMFFPElectromagnetic shield effectivenessDiamond like carbon
相關次數:
  • 被引用被引用:1
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
碳元素以不同的型態存在地球上,其中類鑽碳薄膜具有sp2與sp3鍵結,藉由改變類鑽碳中sp2與sp3鍵結比例,可使類鑽碳薄膜同時具有鑽石及石墨之材料特性。實驗中,改變工作壓力及甲烷濃度來沈積不同sp2與sp3鍵結比例之類鑽碳薄膜,使具有優良的電導率性質,以增加電磁屏蔽性能。利用微波電漿束化學氣相沈積(Microwave plasma jet chemical vapor deposition,MPJCVD)系統沈積類鑽碳薄膜於石英基材上,並探討類鑽碳薄膜在不同工作壓力及甲烷濃度參數改變下,其結構性質對電磁屏蔽效應之影響。進而固定工作壓力及甲烷濃度並添加不同氮氣濃度,觀察氮氣添加對電磁屏蔽效應影響。
實驗結果可證實,工作壓力提升至80 torr時,使類鑽碳薄膜表面形貌轉變成脊狀奈米鑽石,降低類鑽碳薄膜中sp3含量至47 %,且提升表面粗糙度至100 nm。類鑽碳之結構變化可提升疏水性至137度,並降低片電阻值至7.11(ohm/squar),提升類鑽碳薄膜之電磁屏蔽性能至18 dB(吸收及反射係數分別為4 dB、14 dB)。並且當工作壓力為80 torr且氮氣濃度增加0.2 %時,電磁屏蔽性能會降至17 dB,但氮氣濃度的加入可提升類鑽碳薄膜之吸收係數至12.5 dB,並降低反射係數至4.5 dB。


Different forms of carbon widely exist in the Earth and one of them is Diamond like carbon (DLC) film, which is organized by sp2 and sp3 bonds. By changing the ratio of sp2 to sp3 in DLC film, DLC film can simultaneously have the material characteristics of diamond and graphite. In this study, in order to make DLC film have excellent conductivity to increase the performance of electromagnetic shield, working pressure and Methane concentration are changed to depose DLC film, which has different ratios of sp2 to sp3. Microwave plasma jet chemical vapor deposition (MPJCVD) system is used to depose DLC film on the quartz substrate and the influence of the structure properties of DLC film in different working pressures and Methane concentration on electromagnetic shield effectiveness is discussed. In addition, working pressure and Methane concentration are fixed and different Nitrogen concentration is added to observe the influence of the addition of Nitrogen on electromagnetic shield effectiveness.
The result of this study verifies that the working pressure, which rises to 80 torr, can make the surface morphology of DLC film turn into ridge-like nanodiamond, decrease sp3 content in DLC film structure to 47 %, and increase the rough degree of DLC film surface to 100nm. The changes of DLC film structure can increase hydrophobicity to 137°, decrease sheet resistance to 7.11 (ohm/squar), and rise electromagnetic shield effectiveness of DLC film to 18 dB (absorption coefficient is 4 dB and reflection coefficient is 14 dB). Moreover, when working pressure is 80 torr and Nitrogen concentration rises to 0.2 %, the performance of electromagnetic shield effectiveness will decrease to 17 dB; however, the addition of Nitrogen concentration can increase absorption coefficient of DLC film to 12.5 dB and decrease reflection coefficient to 4.5 dB.


摘 要 i
1BAbstract ii
誌謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒 論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧與基本理論 3
2.1 微波電漿 3
2.1.1 電漿原理 3
2.1.2 微波電漿產生與性質 3
2.2 碳的種類與結構 4
2.2.1 鑽石結構與光學特性 5
2.2.2 石墨結構與光學特性 7
2.2.3 類鑽碳結構與光學特性 8
2.3 鑽石、石墨和類鑽碳材料基本性質 8
2.4 人工鑽石歷史 11
2.5 類鑽碳膜成長機制 11
2.6 CVD電漿診斷技術 17
2.6.1 電漿 17
2.6.2 電漿診斷技術 19
2.7 電磁波產生之原理 21
2.8 電磁屏蔽理論 21
2.8.1 反射損失 23
2.8.2 吸收損失 24
2.8.3 多重反射損失 26
2.9 電磁波吸收原理 26
2.10 吸收電磁波方式 28
2.10.1 導電損失 29
2.10.2 導磁損失 29
第三章 實驗流程與步驟 30
3.1 實驗流程 30
3.2 微波電漿束化學氣相沈積系統 31
3.3 實驗步驟與製程參數 33
3.3.1 實驗材料 33
3.3.2 實驗步驟 33
3.3.3 成長類鑽碳薄膜 34
3.4 微波電漿束化學氣相沈積系統 35
3.4.1 掃描式電子顯微鏡(FESEM ) 35
3.4.2 拉曼光譜(Raman Spectrum) 35
3.4.3 化學分析電子光譜儀(ESCA) 36
3.4.4 原子力顯微鏡(Atomic Force Microscopy, AFM) 37
3.4.5 光放射光譜儀(OES) 38
3.4.6 分光光譜儀(UV-NIR) 39
3.4.7 四點探針(4-point probe) 40
3.4.8 網路分析儀 41
3.4.9 同軸導波管 41
3.4.10 電磁波測試之標準試片樣式 42
第四章 結果與討論 43
4.1 不同工作壓力及甲烷濃度下成長類鑽碳膜 43
4.1.1 工作壓力對成長類鑽碳膜之影響 44
4.1.2 甲烷濃度對成長類鑽碳膜之影響 45
4.2 製程參數對類鑽碳薄膜結構性質之影響 45
4.2.1 Raman及ESCA分析類鑽碳薄膜之結構性質 46
4.2.2 AFM及接觸角分析類鑽碳薄膜之結構性質 49
4.3 類鑽碳薄膜結構特性對電磁波性質之影響 53
4.3.1 類鑽碳薄膜之光學性質分析 53
4.3.2 類鑽碳薄膜之四點探針量測分析 56
4.3.3 類鑽碳薄膜之電磁屏蔽效應量測 57
4.4 氮氣添加對成長類鑽碳薄膜之影響 62
4.4.1 氮氣添加對成長類鑽碳膜之表面形貌影響 62
4.4.2 Raman及ESCA分析類鑽碳薄膜之結構性質 63
4.4.3 接觸角分析類鑽碳薄膜之結構性質 65
4.5 添加氮氣成長類鑽碳薄膜對電磁波性質之影響 66
4.5.1 類鑽碳薄膜之光學性質分析 66
4.5.2 類鑽碳薄膜之電磁屏蔽效應量測 67
第五章 結論 71
參考文獻 72


[1]P.W. May, W.J. Ludlow, M. Hannaway, P.J. Heard, J.A. Smith, K.N. Rosser, "Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films, " Diamond and Related Materials, Vol 17, 2008, pp. 105-117.
[2]S. Talapatra1, P.G. Ganesan1, T. Kim1, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S. C. Deevi, and P. M. Ajayan, "Irradiation-Induced Magnetism in Carbon Nanostructures, " Phys. Rev. Lett, Vol 95, 2005.
[3]S. Raina, W.P. Kang, J.L. Davidson, " Field emission from nanodiamond grown with ‘ridge’ type geometrically enhanced features ," Diamond and Related Materials, vol 17, 2008,pp. 790-793
[4]W.S. Jou, H.Z. Cheng, C.F. Hsu, "The electromagnetic shielding effectiveness of carbon nanotubes polymer composites , " Journal of Alloys and Compounds, Vol 434-435, 2007, pp. 641-645.
[5]Narayan Ch. Das, Y. Liu., K. Yang, W. Peng, S. Maiti and H. Wang, "Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding, " Polymer Engineering and Science, Vol 49, 2009, pp. 1627–1634.
[6]Mohammed H. Al-Saleh, Uttandaraman Sundararaj, " Electromagnetic interference shielding mechanisms of CNT/polymer composites , " Carbon, vol 47, 2008, pp. 1738-1746.
[7]趙化橋,等離子體化學與工藝,台北,中國科技技術大學出版社,1993,第112頁。
[8]王鵬, Ansoft HFSS基礎與應用,西安,西安電子科技大學出版社,2007,第10-15頁。
[9]P. K. Bachmann and R. Messier, C&EN, May 15, 1989.
[10]許庭瑋,微波輔助化學氣相沈積合成奈米碳管與特性分析,碩士論文, 國立臺北科技大學光電技術研究所,台北,民國 91 年。
[11]宋健民,鑽石合成,台北市: 全華,民國 89 年,第 547-553 頁。
[12]HUhttp://www.cvd-diamond.com/properties_en.htmU
[13]科學月刊,1999年 11月359期。
[14]顏士豪,電漿幾何形狀及基材與電漿中心相對位置於成長鑽石薄膜影響之研究,碩士論文,國立臺北科技大學,台北,民國93年。
[15]陳廷仁,低溫沈積類鑽碳薄膜於PET耳機振動膜之頻率響應研究,碩士論文,國立臺北科技大學,台北,民國96年。
[16]S. E. Chen, H.H. Li, J. I. Pang, "The advance of luminescence dating, "Journal of Northwest university, vol. 33, no. 2, 2003, pp. 209-212.
[17]W.G. Eversole, U.S. Patent,1962, No.3,030,188.
[18]J. J. Lander and J. Morrison, "Low energy electron diffraction study of the (111) diamond surface," Surf. Sci., 4 ,3 ,1966,241.
[19]M.Tsuda, M.Nakajima, S. Oikawa, "The importance of the positively changed surface for epitaxial growth of diamond at low pressure," Jpn. J. Appi. Phys., vol 26, no 5, 1987, pp527.
[20]M.Tsuda, M.Nakajima, S. Oikawa, "Epitaxial growth mechanism of diamond crystal in CH4 -H2 plasma, " J. Am. Ceram. Soc., vol 108, 1986, pp5780.
[21]Paul W. May, Diamond thin films: a 21st-century material, phil. Trans. R. Soc. Lond. A, 2000, pp. 478-498.
[22]I.Watanabe and K. Sugata, "Diamond film synthesized by microwave plasma CVD of ethyl alcohol, etc.," Jpn. J. Appi. Phys, vol. 27, no. 8, 1988, pp.1397.
[23]K.E.Spear, "Growth of crystal diamond from low pressure gases," Earth and Mineral Sciences, 56 [4], 1987, pp53.
[24]K.E. Spear, M. Frenklach, A. Badzian, T. Badzian, R. Messier, "Vapor deposition of crystal diamond," Ceram. Eng. Sci. Proc., vol 9 [9-10], 1988, pp1095.
[25]林博庸,「大氣電將在玻璃表面清潔之應用」,機械工業,第307期,2008,第83-85頁。
[26]吳佩珊、董福慶,「大面積電漿源鍍膜技術介紹」,機械工業,第314期,2009,第65-67頁。
[27]劉至宏、陳至瑋,「簡介大氣電漿技術與產業應用」,機械工業,第282期,2006,第87-90頁。
[28]張靖郁,利用電漿放射光譜診斷MPJCVD系統成長奈米晶鑽石膜及其光電導特性研究,博士論文,國立臺北科技大學機電科技研究所,台北,民國 97年。
[29]Serway, Raymond A., Jewett, John W., “Physics for scientists & engineers,” A Wiley-interscience Publication, 2004, pp. 33-36.
[30]邢麗英,隱形材料,中國北京:化學工業出版社,2004,第10-40頁。
[31]劉舜華、劉軍民、董星龍,電磁波屏蔽及吸波材料,北京:化學工業出版社,2006,第67-68頁。
[32]張連璧,電磁脈衝學與電磁屏蔽,台北:五南圖書出版股份有限公司,2007,第60-70頁。
[33]G. A. Seber and C. J. Wild, Nonlinear Regression, New York: John Wiley & Sons, 1989, pp.79-82.
[34]Donald R. J. White and Michel Mardiguian, Electromagnetic Shielding Interference Control Technologies. New York:A Wiley-interscience Publication, 1988, pp.101-103.
[35]D4935-99, "Standard Testing Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials," ASTM, vol. 4935, no. 99, 1999, pp. 466-474.
[36]張連璧,電磁脈衝學與電磁屏蔽,台北:五南圖書出版股份有限公司,2007,第55-57頁。
[37]Mills,Jeffrey P. Electro-magnetic interference reduction in electronic systems, New York :A Wiley-interscience Publication, 1993, pp. 153-155.
[38]陳龍華,如何屏蔽電磁干擾,北京:國防工業出版社,1987,第57頁 。
[39]王國光,「陶鐵磁體微波吸收材質之量測與匹配」,新新雙月刊,第二十一卷,第四期,1999,第40-45頁。
[40]林諭男,「陶鐵磁體系列磁性材料簡介」,新新雙月刊,第十四卷,第四期,1990,第226-236頁。
[41]孔守中,“鎳鋅鐵氧磁體奈米粒子生成動力學及其電磁波吸收行為之研究”,碩士論文,中原大學化學系,桃園,2003。
[42]W. Zhao, Q.Y. Zhang, H.P. Zhang, J.P. Zhang ,“Preparation of PS/Ag microspheres and its application in microwave absorbing coating,” Journal of Alloys and Compounds, vol.473, 2009, pp. 206-211
[43]Parveen Sainia, Veena Choudharyb, B.P. Singhc, R.B. Mathurc, S.K. Dhawana, “Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding,” CA R B O N, vol.411, 2004.
[44]V. M. Petrov and V. V. Gagulin,” Microwave Absorbing Materials,Inorganic Materials,” Journal of the European Ceramic Society, Vol. 37, No. 2, 2001, pp. 93-98.
[45]簡碩宏,”抗電磁波之無電鍍銀Nylon複合材料之製備與研究”,碩士論文,大同大學材料工程研究所,台北,2006。
[46]汪建民,材料分析,新竹,中國材料學會,1998。
[47]D. S. knight, and W. B. white, "Characterization of Diamond Films by Raman Spectroscopy," J. Mater. Res., 4, (1989), pp.385-390.
[48]潘扶民,科儀新知,第十九卷,第二期,1997,118-127。
[49]G. Binning, C. F. Quate, Ch. Gerber, Atomic Force Microscope, Physical Review Letters, March 1986, Vol.56, pp.930-933
[50]Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, “ Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges,” Rev. Sci, Instrum 74, 2003, pp. 1098–1102.
[51]Horacio Vasquez, Laura Espinoza, Karen Lozano,Heinrich Foltz (IEEE Member), and Shuying Yang “Simple Device for Electromagnetic Interference Shielding Effectiveness Measurement,” 2009 EMC Society Newsletter, NO. 220 pp. 62-68.
[52]Sobia Allah Rakha, Zhou Xintai, Dezhang Zhua and Yu Guojun, "Effects of N2 addition on nanocrystalline diamond films by HFCVD in Ar/CH4 gas mixture," Current Applied Physics, vol.10, 2010, pp.171–175.
[53]Supil Raina, W.P. Kang and J.L. Davidson, "Nanodiamond film with‘ridge’surface profile for chemical sensing," Diamond and Related Materials, vol 17, 2008, pp.896–899.
[54]Qingfeng Su, Jianmin Liu, Linjun Wang, Weimin Shi and Yiben Xia, " Effects of activated hydrogen etching on surface roughness and optical properties of diamond films," Scripta Materialia, vol 54, 2006, pp. 1871–1874.
[55]M. Smietana, M.L. Korwin-Pawlowski, J. Grabarczyk and J. Szmidt, " Correlation between thickness and optical properties of thin diamond-like carbon films deposited with RF PACVD method," Materials Science and Engineering, vol 165, 2009, pp.132–134.
[56]P.T. Joseph, Nyan-Hwa Tai, Yi-Chun Chen, Hsiu-Fung Cheng and I-Nan Lin, " Transparent ultrananocrystalline diamond films on quartz substrate," Energy Technology Division, Diamond and Related Materials, vol 17, 2008, pp.476–480.
[57]H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejaković, J. W. Yoo, and A. J. Epstein, " Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst," Applied Physics Letters, Vol 84, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top