跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭仲成
研究生(外文):Chung-Cheng Hsiao
論文名稱:道路廢能儲存與發電系統之油壓發電研究
論文名稱(外文):Study of the Electric Generation using Hydraulic Pressure for the Roadway System of Waste Energy Storage and ElectricGeneration
指導教授:丁振卿洪祖全
口試委員:李靖男汪家昌
口試日期:2010-12-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:89
中文關鍵詞:道路廢能儲存與發電系統減速路段氣壓發電系統油壓發電系統
外文關鍵詞:Roadway system of waste energy storage and electric generationbraking sectionsair reservoir to electric generationhydraulic electric generating system
相關次數:
  • 被引用被引用:3
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文主要對本CCT實驗室與宇春綠能源科技股份有限公司合作開發之道路廢能儲存與發電系統之油壓發電研究。本系統以回收車輛在減速路段所損耗之能量,將其收集並儲存後轉換為可使用之電能,系統主要由受壓塊、位能槽及發電裝置等組成,其中,受壓塊係以數個小型活塞缸,利用車輛行經減速路段時壓縮流體至位能槽後,再釋放能量以驅動發電裝置。本論文針對使用不同之氣、液流體搭配不同之氣、液壓引動器進行技術探討,本研究中所建構之小型氣壓發電系統在使用90596.5cm^3之儲氣槽壓力範圍為1~8kg/cm^2、搭配直徑為12.5cm之氣壓
缸驅動發電機,而且發電機負載為20歐姆之水泥電阻時,得到在氣體壓力為1.5kg/cm^2時,發電效率達8.26%為最高。另外,小型油壓發電系統以直接驅動發電機的方式進行實驗,在壓力範圍為4~8kg/cm^2、搭配每轉25c.c.之液壓馬達時發電效率最高達10.34%。進一步修改後,大型油壓發電系統使用效率較高之液壓缸搭配曲軸連桿機構,位能槽重物重量可由500kg增加到1960kg,輸出液壓之壓
力最高為3.56kg/cm^2,負載使用14顆60W鎢絲燈泡組,最高可構成840W之負載。結果顯示,本大型油壓發電系統支初步效率達31.09%。

  This article is focused on studying the electric generation using hydraulic pressure for the roadway system of waste energy storage and electric generation developed by CCT Laboratory in cooperation with Yeuchun green energy technology incorporated company. This system captures the waste energy of vehicles in the braking sections and stores in the energy storage system for electric generation. The system mainly consists of the piston plate, the potential energy storage, and the electricity generating apparatus, where the piston plate is built in multiple piston cylinders, which are pressed by vehicles in the braking sections to transfer and store the driving fluid in the potential energy storage. The high pressure fluid in the potential energy storage is further discharged for electric generation. This article technically discusses air and hydraulic electric generating systems integrated with different actuators. The applied air reservoir is 90596.5cm^3 and stored air pressure range 1~8kg/cm^2, integrated with piston cylinder of piston diameter 12.5cm for electric generation and 20Omega adjustable resistance. The results show that the largest working efficiency of ca. 8.26% in the system appears at the air pressure of ca. 1.5kg/cm^2. Moreover, the small hydraulic electric generating system directly drives generator under pressure range of 4~8kg/cm^2 integrated with hydraulic motor
of 25c.c./rev and receives the maximum working efficiency of 10.34%. The improved big hydraulic electric generating system uses the hydraulic cylinder with higher working efficiency integrated with the crank shaft. The heavy on the potential energy storage is changeable from 500kgto 1960kg. The output hydraulic pressure is 3.56kg/cm^2 and the circuit load has maximum valve of 840W combined with 14x60W light bulbs. The results show that the big hydraulic electric generating system has the preliminary working efficiency of 31.09%.

摘要 i
ABSTRACT iii
誌謝 iv
目錄 vii
表目錄 viii
圖目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的 7
第二章 基礎理論 10
2.1 儲能系統 10
2.1.1 壓縮空氣儲能槽 11
2.1.2 重物位能槽 11
2.2 動力系統 12
2.2.1 油管 12
2.2.2 四口二位球閥 13
2.2.3 四口三位電磁閥 15
2.2.4 液壓馬達 16
2.2.5 氣、液壓活塞缸 17
2.2.6 正反轉同向齒輪組 18
2.2.7 曲軸連桿 19
2.2.8 儲能飛輪 20
2.3 發電系統 21
2.3.1 變頻器 21
2.3.2 發電機 22
2.3.3 三相橋式整流 23
第三章 實驗架設 25
3.1 發電機效率量測平台 25
3.1.1 機構設計 27
3.1.2 馬達規劃 28
3.1.3 負載與電力量測裝置 28
3.2 ‡ 氣壓發電系統製作 29
3.2.1 儲氣槽 31
3.2.2 正反轉同向齒輪組與飛輪 31
3.2.3 發電機負載電路 32
3.3 油壓發電系統製作 34
3.3.1 位能槽 38
3.3.2 液壓馬達與儲能飛輪 39
3.3.3 液壓缸與曲軸連桿 42
3.3.4 四口二位球閥 43
3.3.5 四口三位電磁閥 44
3.3.6 35倍增速齒輪組 45
3.3.7 鎢絲燈泡組負載 46
3.4 電瓶儲能效率量測 46
3.4.1 充電器 47
3.4.2 換流器(Inverter) 49
第四章 結果與討論 50
4.1 電機效率量測 50
4.1.1 電機特性 50
4.2 飛輪儲能分析 53
4.2.1 直接驅動發電機 53
4.2.2 飛輪儲能 55
4.3 ‡ 氣壓與油壓發電系統效率分析 56
4.3.1 氣壓發電系統 57
4.3.2 油壓發電系統 60
4.3.2. 重物位能槽 60
4.3.2.2 四口二位球閥 61
4.3.2.3 四口三位電磁閥 64
4.4 電瓶充放電效率量測. 79
第五章 結論 81
第六章 未來展望 83
參考文獻 89


1Energy Information Administration, International Energy Outlook 2010, Washington: U.S. Department of Energy, 2010, pp. 37-38.
2郭俊賢,小型風力充電系統之開發,碩士論文,大同大學機械工程研究所,台北,2008。
3方良吉等人, 2010年能源產業技術白皮書,台北市:經濟部能源局,2010,第161-162頁。
4美國政府汽車節能網,http://www.fueleconomy.gov/feg/atv.shtml
5K. Akira, "A New-Generation Hybrid Electric Vehicle and Its Supporting Power Semiconductor Devices," Proceedings of 2004 International Symposium on Power Semiconductor Devices & ICs, Japan, 2004, pp. 23-29.
6L. Wenyong, A. Abel, K. Todtermuschke, and T. Zhang, "Hybrid Vehicle Power Transmission Modeling and Simulation with SimulationX," Proceedings of the 2007. IEEE International Conference on Mechatronics and Automation, Harbin, 2007, pp. 1710-1717.
7G. Negre, "Expansion Chamber for a Compressed Air Engine", France, PCT/FR2002/000778.
8T. Alvarez, A. Valero, and J. Montes, "Thermoeconomic Analysis of a Fuel Cell Hybrid Power System from the Fuel Cell Experimental Data," Energy, vol. 31, 2006, pp. 1358-1370.
9D. Halasz, K. Szendy, and J. Lukacs, "Improvement of Thermo-Electric Generator Efficiency by Partial Recuperation of Input Heat," 7th World Energy Conf, Moscow, 1969, pp. 281-288.
10Z. H. Dughaish, "Lead Telluride as a Thermoelectric Material for Thermoelectric Power Generation," Physica B: Condensed Matter, vol. 322, 2002, pp. 205-223.
11M. Loreto, and M. Francesc, "Appropriate Charge Control of the Storage Capacitor in a Piezoelectric Energy Harvesting Device for Discontinuous Load Operation," Sensors and Actuators, A: Physical, vol. 132, no. 1, 2006, pp. 302-310.
12G. Poulin, E. Sarraute, and F. Costa, "Generation of Electrical Energy for Portable Devices: Comparative Study of an Electromagnetic and a Piezoelectric System," Sensors and Actuators, A: Physical, vol. 116, no. 3, 2004, pp. 461-471.
13E. Minazara, D. Vasic, F. Costa, and G. Poulin, "Piezoelectric Diaphragm for Vibration Energy Harvesting," Ultrasonics, vol. 44, 2006, pp. e699-e703.
14M. Lee, and R. Castle, "Electrical Power from Road Seismic Energy," U.S. Patent 845122, 2002.
15T. J. Hayes, "Road Traffic Actuated Generator," U.S. Patent 4409489, 1983.
16R. L. Lundgren, "Device for Generating Electricity by Pedestrian and Vehicular Traffic," U.S. Patent 4434374, 1984.
17T. F. Wiegel, and K. C. Stevens, "Traffic-Driven Wind Generator," U.S. Patent 7098553, 2006.
18R. Davis, "Roadway Power Generating System," U.S. Patent 7589427, 2009.
19J. A. Boyd, "Pump System," U.S. Patent 2333614, 1941.
20J. Dukess, "Highway Pressure-Responsive Means for Generating Electricity by Vehicles," U.S. Patent 4322673, 1982.
21W. P. Le Van, "Method and Apparatus for Utilizing Moving Trffic for Generating Electricity and to Produce Other Useful Work," U.S. Patent 4004422, 1975.
22D. Horianopoulos, and S. Horianopoulos, "Traffic-Actuated Electrical Generator Apparatus," U.S. Patent 20070085342, 2007.
23KinergyPower, http://www.kinergypower.com
24駱璟樺,我國電力部門再生能源發展之經濟與環境效益評估,碩士論文,國立台北大學資源管理研究所,台北,2004。
25M. Gratzel, "Photoelectrochemical Cells," Nature, vol. 414, 2001, pp. 338-344.
26M. G. James, and G. F. Virshup, "31\%-Efficient GaAs/Silicon Mechanically Stacked, Multijunction Concentrator Solar Cell," Conference Record of the IEEE Photovoltaic Specialists Conference, vol. 1, 1988, pp. 754-758.
27C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gr"atzel, C. G. Wu, S. M. Zakeeruddin, and M. Gr"atzel, "Highly Efficient Light-Harvesting Ruthenium Sen-sitizer for Thin-Film Dye-Sensitized Solar Cells," American Chemical Society, vol. 3, no. 10, 2009, pp. 3103-3109.
28P. J. Sebasti, A. Olea, J. Campos, J. A. Toledo, and S. A. Gamboa} , "Temperature Dependence and the Oscillatory Behavior of the Opto-Electronic Properties of a Dye-Sensitized Nanocrystalline $TiO_2$ Solar Cell," Solar Energy Materials and Solar Cells, vol. 81, no. 3, 2004, pp. 349-361.
29M. Toivola, L. Peltokorpi, J. Halme, and P. Lund, "Regenerative Effects by Temperature Variations in Dye-Sensitized Solar Cells," Solar Energy Materials and Solar Cells, vol. 91, no. 18, 2007, pp. 1733-1724.
30C. C. Ting, and W. S. Chao, "Measuring Temperature Dependence of Photoelectric Conversion Efficiency with Dye-Sensitized Solar Cells," Measurement: Journal of the International Measurement Confederation, vol. 43, no. 10, 2010, pp. 1623-1627.
31G. Muller, M. F. Jentsch, and E. Stoddart, "Vertical Axis Resistance Type Wind Turbines for Use in Buildings," Renewable Energy, vol. 34, no. 5, 2009, pp. 1407-1412.
32C. C. Ting, J. N. Lee, and C. H. Shen, "Development of a Wind Forced Chiller and its Efficiency Analysis," Applied Energy, vol. 85, no. 12, 2008, pp. 1190-1197.
33C. C. Ting, C. W. Lai, and C. B. Huang, "Developing the Dual System of Wind Chiller Integrated with Wind Generator," Applied Energy, vol. 88, no. 3, 2011, pp. 741-747.
34C. C. Ting, T. J. Wu, J. Y. Lee, and H. W. Chang, "Design and Investigation of a Roadway System for Waste Gas Reduction, Energy Storage, and Electric Generation," 8th International Conference on Sustainable Energy Technologies, 31. August - 3 September, Aachen, Germany, 2009.
35張宏銘、李志洋、張鴻威、丁振卿,「道路儲能發電裝置之油壓傳動系統效率分析」,第三十三屆全國力學會議,苗栗,11月14日,2009。
36胡聰賢,電動車輛續航力之提升與煞車回收能量管理,碩士論文,國立台灣大學機械工程研究所,台北,2005。
37溫宗修,風力發電機之混合式最大功率追蹤法,碩士論文,大同大學電機工程研究所,台北,2009。
38R. Qu, M. Aydin, and T. A. Lipo, "Performance Comparison of Dual-Rotor Radial-Flux and Axial-Flux Permanent-Magnet BLDC Machines," IEMDC''03. IEEE International, vol. 3, 2003, pp.1948-1954.
39L. Solero, O. Honorati, F. Caricchi, and F. Crescimbini, "Nonconventional Three-Wheel Electric Vehicle for Urban Mobility," IEEE Transactions on Vehicular Technology, vol. 50, no. 4, 2001, pp. 1085-1091.
40M. Aydin, S. Huang, and T. A. Lipo, "Design, Analysis, and Control of a Hybrid Field-Controlled Axial-Flux Permanent-Magnet Motor," IEEE Transactions on Industrial Electronics, vol. 57, NO. 1, 2010, pp. 78-87.
41陳呈芳,工程熱力學,台北市:高立圖書有限公司,2002,第72-75頁。
42陳呈芳,熱力學概論,台北市:全華科技圖書股份有限公司,2004,第79-104頁。
43林正仁、呂立鑫、蔡秉宏, 熱力學,台北市:全華科技圖書股份有限公司,2003,第4.4-4.6頁。
44李瑞貞、周嘉宜、蕭金政、蕭義雄、林建德、倪紹仲、姬梁文、張雲景,物理(上) ,台北市:美商麥格羅希爾國際股份有限公司 台灣分公司,1997,第169-171頁。
45劉品均,流體力學,台北市:美商麥格羅希爾國際股份有限公司 台灣分公司,2002,第5.15-5.19頁。
46張庭瑞,流體力學概論,台北市:文京圖書有限公司,1995,第113-153頁。
47張世鄉、陳維方、龔傑、鐘明吉,流體力學,台北市:全華科技圖書股份有限公司,2004,第6.1-6.49頁。
48M. W. Frank, Fluid Mechanics, New York: McGraw-Hill, 2003, pp. 11-12.
49Zipson Steel Industrial Co., Ltd., http://zipson.myweb.hinet.net/
50何植, 實用油壓學,台北市:全華科技圖書股份有限公司,1984,第77-171頁。
51許震遠,油壓機械之理論與實務,台南市:復漢出版社,1984,第156-231頁。
52陳雄章,機械元件設計,台中市:滄海書局,1999,第501-503頁。
53M. W. Keith, 應用力學-動力學,台北市:高立圖書有限公司,2006,第144-145頁。
54鍾玉堆、林光燦、黃顧文、董永財,電機學,台北市:新科技書局,1998,第82-179頁。
55戴文正, 特殊電機,台北市:文笙書局,1995,第11-22頁。
56鍾玉堆, 電機學,台北市:高立圖書有限公司,1992,第67-100頁。
57馬乃孝、王慶善, 直流 / 交流電路 (上冊),台北市:儒林圖書有限公司,1988,第463-467頁。
58江國禎、張啟禎、黃龍潭, 汽車學$<$四$>$(汽車電學篇),台南市:復文書局,1992,第71-91頁。
59大正鋁業&合正欣科技股份有限公司,http://www.tc168tw.com.tw/
60東元電機重電事業部,http://www.teco.com.tw/fa/bg\_version/ecateloge.htm
61東元電機電控事業部,http://www.teco.com.tw/sa/
62Sauer-Danfoss Inc., http://www.sauer-danfoss.com/
63台輝油壓有限公司,http://www.taihuei.com.tw/
64張宏銘、李志洋、張鴻威、丁振卿,「車道壓縮集氣系統的效能之理論與實驗分析」, 第四屆智慧生活科技研討會,台中,2009。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top