(34.204.185.54) 您好!臺灣時間:2021/04/16 19:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳明暉
研究生(外文):Ming-Hui Chen
論文名稱:以轉換功率之壽命模型預測交直流測試下的高溫熱載子劣化情形
論文名稱(外文):A Lifetime Model with Transformed Power for Predicting the High Temperature Hot-Carrier Degradation under DC and AC Stress
指導教授:陳雙源陳雙源引用關係黃恆盛黃恆盛引用關係
口試委員:劉傳璽王木俊
口試日期:2011-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:壽命模型轉換功率交流直流熱載子
外文關鍵詞:lifetime modeltransformed powerACDCHot-carrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
長久以來,熱載子(hot-carrier, HC)效應一直是研究MOSFET元件劣化的重要議題,過去文獻多在描述直流(DC)測試下的熱載子壽命模型。然而,無論這些模型有多精準,也無法確切表達元件實際應用在交流(AC)電路下的劣化情形。因此本實驗以轉換功率(transformed power)的方式,研究並預測在交直流加壓測試下元件壽命之劣化情形。
實驗使用聯華電子公司(UMC)提供的65奈米製程晶圓,所研究的MOSFET元件通道長寬比為1 μm / 0.05 μm (N型)及1 μm / 0.06 μm (P型)。介電層為SiON,厚度19.5 Å。在25 ℃、85 ℃和125 ℃三種不同溫度下,進行DC與AC的通道熱載子實驗。此外同時考慮電壓、電流以及溫度的影響,提出修正後的功率轉換法,用以找出有關熱載子可靠度的交直流壽命。
由實驗結果顯示,不論N型或P型的MOSFET元件,以功率轉換的方式皆可成功描述元件劣化情形,因此可使用此模型做交直流測試下的壽命預測。其中,在低頻與高頻的交流測試下,隨著閘極提供的信號週期越長,雖然總轉換功率(Ptotal)不因頻率不同而有太大變化,但元件仍然呈現較為劣化的狀況。另一方面,由功率轉換模型的參數變化可得知,溫度升高源極功率(Psource)會降低而基極功率(Pbulk)會提升。而元件壽命的預測結果顯示,在高測試電壓下功率轉換模型較傳統模型樂觀,且在操作電壓下使用傳統模型預測可能會高估元件劣化情形。
本研究重要性在於,建立一個創新的壽命模型,且證明元件劣化至失效可視為總轉換功率的能量所導致。希望此研究成果可使晶圓廠或積體電路設計者接受從功率的觀點看待元件劣化情形,並能用於預測元件的交直流壽命。
Hot-carrier (HC) effect has been an important issue to investigate degradation of MOSFETs for a long time, and the associated HC lifetime models presented in the past were mostly derived from DC stress. However, no matter how accurate these models are, they can not be precisely suitable for the damage of in-circuit MOSFET properties applying on AC operation practically. For this reason, this research continues to develop the transformed power method to study and predict MOSFET lifetime on either DC or AC stress.
In this work, the wafers were supplied from 65 nm technology of United Micro-electronics Corporation (UMC) and were made for reliability study. The tested n-type MOSFETs have channel length/width equal to 1/0.05 (μm/μm), and 1/0.06 (μm/μm) for p-type. The thickness of SiON gate dielectric is 19.5 Å. Furthermore, stress modes are set on DC and AC channel hot-carrier (CHC) conditions at three different temperatures, 25 ℃, 85 ℃, and 125 ℃. In addition, a modified way of power transform method, which consists of voltage, current, and temperature, is proposed to find the DC and AC lifetimes of MOSFETs based on CHC reliability consideration.
From the CHC test results of either nMOSFETs or pMOSFETs, it is found that the power transform model can successfully describe device damage and thus the model can be use for lifetime prediction in DC and AC stress. And, under the AC stress, the device degradation is much worse as the period applied in the gate terminal becoming longer. This case is valid for high and low frequency, although the total transformed power (Ptotal) has little change with different frequencies. On the other hand, the variance in parameter of power transform model reveals that the elevated temperature is able to cause the source power (Psource) become lower, and it also reflects the increment on the bulk power (Pbulk) simultaneously. The result of predicting device lifetime shows that the power transform model is more optimistic than the conventional model under high stress voltage, and using the conventional model, at operation region, could overestimate the degradation of the MOSFETs.
Consequently, the significance of this work is to establish an innovative lifetime model to demonstrate that the total transformed power may be regarded as the quantity to cause device failure. And this model can be used to accurately forecast the lifetime of in-circuit devices in either DC or AC operations. It is hope that this research will enable the wafer foundries and IC design houses to conceive the MOSFET degradation from the point of view of total power applied on it.
ABSTRACT (Chinese) i
ABSTRACT (English) iii
ACKNOWLEDGEMENTS v
CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix

Chapter 1 INTRODUCTION
1.1 Background Background and Motivation 1
1.2 Thesis Organization 2

Chapter 2 BASICS ABOUT HOT-CARRIER RELIABILITY ISSUES
2.1 Research about Hot-Carrier Effect 3
2.1.1 Hot-carrier effect 3
2.1.2 Mechanisms 6
2.1.3 Temperature effect 7
2.1.4 Degradation under AC stress 10
2.2 Research about Hot-Carrier Degradation Model 12
2.2.1 Lucky-electron model 12
2.2.2 The Hu model 13
2.2.3 The Takeda model 15
2.2.4 The power transform model 18
2.3 Research about Lifetime for AC Hot-Carrier Stress 20
2.4 Problem Formulation 27

Chapter 3 EXPERIMENTAL DESIGNS
3.1 Experimental Structures 29
3.2 Stress Methods 29
3.3 Stress and Measurement Conditions 31

Chapter 4 RESULTS AND DISCUSSION
4.1 Device Degradation at Elevated Temperature for MOSFET Devices 34
4.1.1 DC CHC stress for MOSFET devices 34
4.1.2 AC CHC stress for MOSFET devices 34
4.1.2.1 Vt,lin shift under different signal frequencies 34
4.1.3 Comparison of DC and AC CHC stress induced device degradation 43
4.2 Power Transform Lifetime Model 46
4.3 Model Proof and Prediction 65
4.3.1 Model proof for DC CHC stress 65
4.3.2 Model proof for AC CHC stress 68
4.3.3 Lifetime prediction 76

Chapter 5 CONCLUSIONS AND FUTURE WORKS
5.1 Conclusions 79
5.2 Future Works 80
REFERENCES 81
VITA 85
[1.1] P. Chaparala and D. Brisbin, “Impact of NBTI and HCI on PMOSFET threshold voltage drift,” Microelectronics Reliability, vol. 45, 2005, pp. 13-18.
[1.2] S. Y. Chen, C. H. Tu, J. C. Lin, P. W. Kao, W. C. Lin, Z. W. Jhou, S. Chou, J. Ko, and H. S. Haung, “Temperature effect on the hot-carrier induced degradation of pMOSFETs,” IIRW Final Report, 2006, pp. 163-166.
[1.3]. M. Song, K. P. MacWilliams, J. C. S Woo, “Comparison of NMOS and PMOS hot carrier effects from 300 to 77 K,” IEEE Transactions on Electron Devices, vol. 44, no. 2, February, 1997, pp. 268-276.
[1.4] E. Takeda, Y. Nakagome, H. Kume, S. Asai, “New hot-carrier injection and device degradation in submicron MOSFETs,” IEEPROC, vol. 130, no. 3, June. 1983, pp. 144-150.
[1.5] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305.
[1.6] Z. Cui, J. J. Liou, Y. Yue, and J. Vinson, “Empirical reliability modeling for 0.18-lm MOS devices,” Solid-State Electronics, 2003, pp. 1515-1522.
[1.7] E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection,” IEEE Electron Device Letters, vol. edl-4, no. 4, April. 1983, pp. 111-113.
[1.8] K. N. Quader, P. K. Ko, and C. Hu, “Projecting CMOS circuit hot-carrier reliability from DC device lifetime,” IEEE IEDM, 1993, pp. 511-514.
[1.9] R. H. Tu, E. Rosenbaum, W. Y. Chan, C. C. Li, E. Minami, K. Quader, P. Ko, and C. Hu, “Berkeley reliability tools-BERT,” IEEE Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 10, October. 1993, pp. 1524-1534.
[1.10] A. Ito, “A simple method to estimate lifetime of nMOSFET's in the circuits using DC stress data,” IEEE Electron Device, vol. 42, no. 6, June. 1995, pp. 1193-1195.
[1.11] T. Horiuchi, “In-circuit hot-carrier model and its application to inverter chain optimization,” IEEE Electron Device, vol. 43, no. 9, September, 1996, pp. 1428-1432.
[2.1] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, New Jersey: John Wiley, 2007.
[2.2] C. T. Wang, “Hot carrier design considerations for MOS devices and circuits,” July, 1992.
[2.3] Renesas Technology Crop, Semiconductor reliability handbook, 2006, pp. 110.
[2.4] M. Song, K. P. MacWilliams, J. C. S Woo,, “Comparison of NMOS and PMOS hot carrier effects from 300 to 77 K,” IEEE Transactions on Electron Devices, vol. 44, no. 2, February, 1997, pp. 268-276.
[2.5] S. H. Hong, S. M. Nam, B. O. Yun, B. J. Lee, C. G. Yu and J. T. Park, “Temperature dependence of hot-electron-induced degradation in MOSFET's,” Microeletronics Reliability, vol. 39, 1999, pp. 809-814.
[2.6] T. Chen, C. Zhu, L. Najafizadeh, B. Jun, A. Ahmed, R. Diestelhorst, G. Espinel, J. D. Cressler, “CMOS reliability issues for emerging cryogenic lunar electronics applications,” Solid-State Electronics, vol. 50, 2006, pp. 959–963.
[2.7] C. H. Tu, S. Y. Chen, M. H. Lin, M. C. Wang, S. H. Wu, H. S. Huang, “The switch of the worst case on NBTI and hot-carrier reliability for 0.13 mm pMOSFETs,” Applied Surface Science, vol. 254, 2008, pp. 6186-6189.
[2.8] P. Aminzadeh, M. Alavi, D. Scharfetter, “Temperature dependence of substrate current and hot carrier-induced degradation at low drain bias,” Symposium on VLSI Technology Technical Digest, 1998, pp. 178-179.
[2.9] G. T. Sasse, J. Bisschop, “The hot carrier degradation rate under AC stress,” IEEE, IRPS10, 2010, pp. 830-834.
[2.10] M. M. Kuo, K. Seki, P. M. Lee, J. Y. Choi, P. K. Ko, C. Hu, “Simulation of MOSFET lifetime under AC stress hot-electron stress,” IEEE Transactions on Electron Devices, vol. 35, July, 1988, pp. 1004-1010.
[2.11] E. Amat, R. Rodriguez, M Nafria, and X. Aymerich, “Channel hot-carrier degradation under AC stress in short channel nMOS devices with high-k gate stacks,” Microelectronic Engineering, vol. 86, 2009, pp. 1908-1910.
[2.12] W. Shockley, “Problems related to p-n junctions in silicon,” Solid-State Electron., vol. 2, 1961, pp. 35-67.
[2.13] S. Tam, F. C. Hsu, C. Hu, R. S. Muller, P. K. Ko, “Hot-electron currents in very short channel MOSFET’s,” IEEE Electron device letters, vol. edl-4, no. 7, June. 1983, pp. 249-251.
[2.14] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation-model, monitor, and improvement,” IEEE Journal of Solid-State Circuits, vol. sc-20, no. 1, 1985, pp. 295-305.
[2.15] E. Takeda, H. Kume, T. Toyabe, and S. Asai, “Submicrometer MOSFET structure for minimizing hot-carrier generation,” IEEE Transactions on Electron Devices, vol. ed-29, no. 4, April, 192, pp. 611-618.
[2.16] E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection,” IEEE Electron Device Letters, vol. edl-4, no. 4, April, 1983, pp. 111-113.
[2.17] S. Y. Chen, C. H. Tu, M. X. Wu, H. S. Huang, Z. W. Jhou, S. Chou, and J. Ko, “Using power transform to study DC and AC CHC effects on nMOSFETs in 65 nm technology,” SSDM, 2010.
[2.18] S. Y. Chen, C. H. Tu, J. C. Lin, M. C. Wang, P. W. Kao, M. H. Lin, S. H. Wu, Z. W. Jhou, S. Chou, J. Ko, and H. S. Haung, “Investigation of DC hot-carrier degradation at elevated temperatures for p-channel metal–oxide–semiconductor field-effect transistors of 0.13um technology,” Japanese Journal of Applied Physics, vol. 47, no. 3, 2008, pp. 1527-1531.
[2.19] T. Horiuchi, H. Mikoshiba, K. Nakamura, and K. Hamanoa, “Simple Method to Evaluate Device Lifetime Due to Hot-Carrier Effect Under Dynamic Stress,” IEEE Electron Device Letter, vol. edl-7. no. 6, June, 1986, pp. 337-339.
[2.20] A. Ito, “A simple method to estimate lifetime of NMOSFET's in the circuits using DC stress data,” IEEE Transactions on Electron Devices, vol. 42, no. 6, June, 1995, pp. 1193-1195.
[2.21] J. Y. Choi, P. K. KO, and C. HU, “Hot-carrier-induced MOSFET degradation under ac stress,” IEEE Electron Device Lett., vol. edl-8, 1987, pp. 333-335.
[2.22] P. Habas, “Hot-carrier aging of NMOST in analog circuits with large periodic drain signal,” Solid-State Electronics, vol. 50, May. 2006, pp. 727-732.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔