跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子翔
研究生(外文):Tzu-Hsiang Lin
論文名稱:含界面裂紋之雙層壓電複合層板受平面動力負載之暫態響應
論文名稱(外文):Transient response of an interface crack between two piezoelectric layers under mechanical impacts
指導教授:應宜雄應宜雄引用關係
指導教授(外文):Yi-Shyong Ing
口試委員:馬劍清劉昭華
口試日期:2011-07-20
學位類別:碩士
校院名稱:淡江大學
系所名稱:航空太空工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:67
中文關鍵詞:壓電複合層板界面裂紋應力強度因子平面動力破壞暫態
外文關鍵詞:piezoelectricBimaterialsInterface crackStress intensity factorIn-planeDynamic fractureTransient
相關次數:
  • 被引用被引用:2
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究含界面裂紋之雙層壓電複合層板受平面動力負載之暫態響應,解析一含有限長可滲透性裂紋之雙層複合壓電材料,於裂紋面承受平面正向應力與平面剪應力動力負載之暫態問題。本文使用拉普拉斯轉換、傅立葉轉換、奇異積分方程、Jacobi 多項式重新解析Gu et al.(2002)已求解過的問題。本文求得的應力強度因子解析解與Gu et al.(2002)所獲得的結果並不相同,且數值計算結果有很大的差異。本文計算時域中之應力強度因子,乃採用Durbin 之數值拉普拉斯逆轉換法,所獲得的暫態圖形比Gu et al. (2002)的結果更能看出各個反射波與繞射波的到達現象。

In this study, transient response of an interface crack between two piezoelectric layers is investigated. The composite is subjected to uniformly in-plane mechanical impacts under permeable boundary conditions. The integral transform, Cauchy singular integral equation methods, and Jacobi polynomials expansions are applied to obtain the solutions in the Laplace transform domain. Durbin’s method is used to carry out the numerical inversion of Laplace transform. The accuracy of numerical results is examined and the applicable numerical parameters are suggested by the
experience of calculation. Finally, the numerical results are evaluated and discussed in detail.

中文摘要 ………………………………………………………………I
英文摘要………………………………………………………………II
目錄……………………………………………………………………III
圖目錄……………………………………………………………………V
表目錄…………………………………………………………………VI
第一章 緒論…………………………………………………………1
1.1 研究動機……………………………………………………1
1.2 文獻回顧……………………………………………………4
1.3 內容簡介……………………………………………………7
第二章 理論基礎………………………………………………8
2.1 壓電控制方程式及本構方程式……………………………8
2.2 拉普拉斯轉換及逆轉換……………………………………10
2.3 傅立葉轉換及逆轉換……………………………………10
2.4 奇異積分方程 (Singular Integral Equation) ………………10
2.5 Jacobi 多項式………………………………………………11
2.6 Durbin 方法…………………………………………………12
第三章 含界面裂紋之雙異質壓電複合層板受平面動力負載之
暫態響應……………………………………………………14
3.1 問題描述……………………………………………………14
3.2 含可滲透性界面裂紋之雙異質壓電層板承受平面動力
負載之暫態響應解析……………………………………16
第四章 數值結果與討論……………………………………………42
4.1 數值運算分析……………………………………………42
4.2 數值結果與比較……………………………………………45
第五章 結論與成果…………………………………………………48
5.1 本文結論……………………………………………………48
5.2 本文成果……………………………………………………49
5.3 尚待研究的方向……………………………………………49
參考文獻………………………………………………………………51
附錄一論文簡易版 ……………………………………………………60

圖 目 錄
圖3-1 含界面裂紋之雙異質壓電複合層板之圖形…………………54
圖4-1 應力強度因子於不同加總項數上限之比較…………………55
圖4-2 應力強度因子於不同層板厚度之比較………………………56
圖4-3 應力強度因子於厚層板時不同加總項數上限之比較………57
圖4-4 核函數 積分取至不同上限之比較 ………………58

表 目 錄
表4-1 壓電材料常數表………………………………………………59


Boris Osilenker, “Fourier Series in orthogonal polynomials”, World Scientific, pp. 80-104, Singapore, 1999.

Dubner, R., Abate, J., “Numerical inversion of Laplace transforms by relating them to the finite Fourier Cosine transform”, Journal of the Association for Computing Machinery, Vol. 15, pp. 115-123, 1968.

Durbin, F., “Numerical inversion of Laplace transforms: an efficient improvement to Duber and Abate’s method”, The Computer Journal, Vol. 17, pp. 371–376, 1974.

Erdogan, F., “Approximate solutions of systems of singular integral equations”, SIAM Journal on Applied Mathematics, Vol. 17, No. 6, pp. 1041-1059, Nov., 1969.

Erdogan, F., Gupta, G.D., “The stress analysis of multi-layered composites with a flaw”, International Journal of Solids and Structures, Vol. 7, pp. 39-61, 1971

Erdogan, F., Gupta, G.D., “Layered composites with an interface flaw”, Int. J. Solids Structure, Vol. 7, pp. 1089-1107, 1971.

Erdogan, F., Gupta, G.D., “Stresses near a flat inclusion in bonded dissimilar materials”, Int. J. Solids Structures, Vol. 8, pp. 533-547, 1972.

Erdogan, F., “Fracture mechanics of interfaces”, Damage and
Failure of Interfaces, ISBN. 90-5410-899-1, 1997.

Gabor Szego, “Orthogonal Polynomials”, American Mathematical
Society, Vol. 23, pp. 59-99, 2003.

Gu, B., Yu, S.W., Feng, X.Q., “Transient response of an interface crack between dissimilar piezoelectric layers under mechanical impacts”, International Journal of Solids and Structures, Vol. 39, pp. 1743-1756,
2002.

Gupta, V., Argon, A.S., Suo, Z., “Crack deflection at an interface between two orthotropic materials”, Journal of Applied Mathematics, Vol. 59, pp. 79-87, 1992.

Karpenko, L.N., “Approximate solution of a singular integral
equation by means of Jacobi polynomials”, Journal of Applied
Mathematics and Mechanics, Vol. 30, No. 3, pp. 564-569,1966.

Lee, K.Y., Takahashi, H., “Fracture and Strength’90”, Trans Tech Publications, ISBN. 0-87849-618-1, 1991.

Meguid, S.A., Zhao, X., “The interface crack problem of bonded piezoelectric and elastic half-space under transient electromechanical loads”, Journal of Applied Mechanic,, Transactions ASME, Vol. 69, pp. 244-253, 2002.

Pak, Y., “Crack extension force in a piezoelectric material”, Journal of Applied Mathematics, Vol. 57, pp. 647-653, 1990.

Qin, Q.H., Zhang, X., “Crack deflection at an interface between dissimilar piezoelectric materials”, International Journal of Fracture, Vol. 102, pp. 355-370, 2000.

Rice, J.R., “Elastic fracture mechanics concepts for interfacial cracks”, Journal of Applied Mechanics, Vol. 55, pp. 98-103, 1988.

Shen, S.P., Kuang, Z.B., “Wave scattering from an interface crack in laminated anisotropic media”, Mechanics Research Communications, Vol. 25, No. 5, pp. 509-517, 1998.

Shen, S.P., Kuang, Z.B., Hu, S.L., “Interface crack problems of a laminated piezoelectric plate”, Journal of Mechanics and Solids, Vol. 18, pp. 219-238, 1999.

Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., “Fracture mechanics for piezoelectric ceramics”, Journal of the Mechanics and Physics of Solids, Vol. 40, No. 4, pp. 739-765, 1992.

Wang, T.C., Han, X.L., “Fracture mechanics of piezoelectric
materials”, International Journal of Fracture, Vol. 98, pp. 15-35, 1999.

Wang, X.Y., Yu, S.W., “Transient response of a crack in piezoelectric strip subjected to mechanical and electrical impacts: mode-I problem”, Mechanics of Materials, Vol. 33, No. 1, pp. 11-20, 2000.

Zhao, X., “An efficient approach for the numerical inversion of Laplace transform and its application in dynamic fracture analysis of a piezoelectric laminate”, International Journal of Solids and Structures,
Vol. 41, pp. 3653-3674, 2004.

廖雪吩 (2007),應用數值拉普拉斯逆轉換法於壓電材料動力破壞之研究,淡江大學航空太空工程學系碩士班碩士論文。

許吉勝 (2008),含有限長裂紋之彈壓電複合層板動力破壞分析,淡江大學航空太空工程學系碩士班碩士論文。

余智瑋 (2009),含有限長裂紋之雙異質壓電複合層板動力破壞分析,淡江大學航空太空工程學系碩士班碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top