參考文獻
一、中文部分:
[1] 王顗熒. (2005). 利用排序集合樣本對柏拉圖分配作貝氏預測區間. 淡江大學統計學系碩士班學位論文。[2] 李銘凱. (2008). 利用逐步型 II 設限樣本對雙參數柏拉圖分配之未來觀測值做貝氏預測區間. 淡江大學統計學系碩士班學位論文。[3] 余靜媺. (2005). 利用右型 II 設限樣本對柏拉圖分配的未來順序觀測值作貝氏預測. 淡江大學統計學系碩士班學位論文。[4] 許慧瑛. (2008). 利用單樣本及雙樣本資料對 Burr type X 分配之參數做貝氏預測區間估計. 淡江大學統計學系碩士班學位論文。二、英文部分:
[1]Aitchison, J. and Dunsmore, I. R. (1975),Statistical Prediction Analysis, Cambridge University Press, Cambridge.
[2] Ahmadi, J., & MirMostafaee, S. (2009). Prediction intervals for future records and order statistics coming from two parameter exponential distribution. Statistics & Probability Letters, 79(7), 977-983.
[3] David, H. A. (1981), Order Statistics, 2nd ed. ,John Wiley and Sons, Inc. , New York.
[4] Jaheen, Z. F. and Al-Matrafi B. N. (2002), Bayesian prediction bounds from the scaled Burr type X model. Journal of Computers and Mathematics Applications 44, 587-594
[5]Lawless, J. (1977). Prediction intervals for the two parameter exponential distribution. Technometrics, 19(4), 469-472.
[6] Lee, W. C., Wu, J. W., & Yu, H. Y. (2007). Statistical inference about the shape parameter of the bathtub-shaped distribution under the failure-censored sampling plan. International Journal of Information and Management Sciences, 18(2), 157-172.
[7] Likeš, J. (1974). Prediction of sth ordered observation for the two-parameter exponential distribution. Technometrics, 16(2), 241-244.
[8] Nigm, A., Al-Hussaini, E. K., & Jaheen, Z. F. (2003). Bayesian one-sample prediction of future observations under pareto distribution. Statistics, 37(6), 527-536.
[9] Nigm, A., & Hamdy, H. (1987). Bayesian prediction bounds for the pareto lifetime model. Communications in Statistics-Theory and Methods, 16(6), 1761-1772.
[10]Wu, J. W., Lee, W. C., & Chen, S. C. (2005). Prediction intervals of future observation from one-parameter exponential distribution based on multiply type II censored samples. Applied Mathematics and Computation, 167(2), 741-806.
[11] Wu, J. W., Lee, W. C., & Chen, S. C. (2006). Computational comparison for weighted moments estimators and BLUE of the scale parameter of a pareto distribution with known shape parameter under type II multiply censored sample. Applied Mathematics and Computation, 181(2), 1462-1470.
[12] Wu, J. W., Lee, W. C., & Chen, S. C. (2007a). Computational comparison of prediction future lifetime of electronic components with pareto distribution based on multiply type II censored samples. Applied Mathematics and Computation, 184(2), 374-406.
[13] Wu, J. W., Lee, W. C., & Chen, S. C. (2007b). Computational comparison of prediction intervals of future observation for two-parameter exponential distribution. Applied Mathematics and Computation, 184(2), 1084-1117.
[14] Wu, J. W., Lee, W. C., & Chen, S. C. (2007c). Computational comparison of the prediction intervals of future observation for three-parameter pareto distribution with known shape parameter. Applied Mathematics and Computation, 190(1), 150-178.
[15] Wu, J. W., Wu, C. C., & Tsai, M. H. (2005). Optimal parameter estimation of the two-parameter bathtub-shaped lifetime distribution based on a type II right censored sample. Applied Mathematics and Computation, 167(2), 807-819.
[16] Wu, J. W., Wu, S. F., & Yu, C. M. (2007). One-sample bayesian predictive interval of future ordered observations for the pareto distribution. Quality and Quantity, 41(2), 251-263