跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方玲云
研究生(外文):Ling-Yun Fang
論文名稱:應用小腦控制器於具有時變延遲之 CDMA 無線通訊系統功率控制
論文名稱(外文):Power Control using CMAC for CDMA Cellular Communication System and time-varying delay
指導教授:劉寅春
指導教授(外文):Peter Liu
口試委員:江東昇邱謙松
口試日期:2011-07-07
學位類別:碩士
校院名稱:淡江大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:48
中文關鍵詞:近遠效率小腦模型控制器干噪比通道衰落時變延遲
外文關鍵詞:DS-CDMACMACSINRtime-varying
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的直接序列分碼多工(DS/ CDMA)系統之功率控制設計和研究。在DS- CDMA系統中,不同的用戶從不同距離發射信號對於基地站有著不同的接收功率。這些不同的功率信號都會互相干擾。在功率控制其主要目的解決「近遠效率」問題。本論文的DS - CDMA功率控制系統考慮在接收器和發射器之間具有往返時延、通道衰落和雜訊。根據反饋的信干噪比(Signal-to-Interference-plus-Noise-Ratio,SINR)為控制器設計的依據與基礎,經由所設計的系統功率控制控制器,在訊號穩定的狀態之下,用戶端傳輸到基地台之功率達到最小之目的。在本論文另一部分所研究的通道傳輸中,使用不穩定具有變化之延遲時間,每一次系統會面臨到不同的延遲時間,由於延遲時間為不可預知的隨機變數,在控制器的設計上,將會增加控制器追尋穩定性的困難度。我們使用小腦模型控制器(Cerebella Model Articulation Controller ; CMAC)具有學習特性和收斂速度快的特性,對DS - CDMA系統架構學習。在本研究中CMAC的特點為快速收斂的區域推廣,並對時變延遲系統可以保證穩定。

This thesis proposes Cerebella Model Articulation Controller (CMAC) for power control of direct sequence code division multiple access (DS-CDMA) system. Since there is an infinite increase in number of users in a cellular radio system, limited resources must be efficiently used. Hence, closed-loop power control is important in resource planning. For DS-CDMA systems, there are different users transmitting signals to base stations, from various distances with difference power. In the DS-CDMA power control system architecture, round-trip delay, channel fading and noise. According to the SINR signal (Signal-to-Interference-plus-Noise-Ratio) feedback, design the controller to control the limited power between the base station and transmitter station and make the system to the stable. The other part of our research time-varying delay. In order to achieve the target power we use the CMAC.

Content

Abstract in Chinese............................................................................................I
Abstract in English...........................................................................................II
Contents...........................................................................................................III
List of Figures................................................................................................V
Chapter 1 Introduction ...................................................................................1
1.1 Thesis Objective................................................................................1
1.2 Thesis Motivation..............................................................................2
1.3 Thesis Outline……………………………………………………….4
Chapter 2 Background…………………….. ....................................................5
2.1 Cerebellar Model Articulation Controller..........................................5
2.2 Direct-Sequence Code Division Multiple Access.............................6
Chapter 3 Cerebellar Model Articulation Controller.....................................9
3.1 Methodology......................................................................................9
3.1.1 Mathematical preliminaries…………………………………..10
3.1.2 Learning method…………………………………………….. 11
3.1.3 Learning flow chart................………………………………13
3.1.4 Learning objectives …………………………………………..13
3.1.4 .1Learning rate……..…………………………………….13
3.1.4.2 The promotion of regional...…………………………...13
3.1.4.3 Quantified……………….……………………………..15
3.2 Stability Analysis.............................................................................18
Chapter 4 CDMA Power Control as an Example……………………...…… 22
4.1 Background of CDMA Power Control…………………………..….22
4.1.1 Model of Channel…………………………………………….22
4.1.2 Model of Receiver……………………………………………24
4.1.3 Model of Transmitter…………………………………………25
4.2 CMAC for CDMA Power Control...………………………………..25
4.3 Comparisons of Combined and Separated Feedback/Feedforward
Time…………………………………………………………………28
4.4 Numerical Simulations……………………………………………...29
4.4.1 Effect of Channel Fading and Interference…………………...30
4.4.2 Effect on the Outage Probability……………………………..32
4.4.3 Effect of Number Mobile Users……………………………...35
4.5 Time-varying delay………………………………………………….36
4.5.1 Effect of Channel Fading and Interference …………………..39
4.5.2 Effect on the Outage Probability……………………………..41
4.5.3 Effect of Number Mobile Users……………………………...43
Chapter 5 Conclusions……………………………………………………… 45
Reference…………………………………………………………………….46








List of Figures

1.1 CDMA system block……………………………………………………...1
1.2 The CDMA system after improvement …………………………………. 2
3.1 Cerebella model articulation controller module ………………………...10
3.2 Cerebella model articulation controller mapping method ………………12
3.3 Cerebella model articulation controller mapped hypercube……………..12
3.4 Cerebella model articulation controller flow chart………………………14
3.5 GBF CMAC system……………………………………………………..15
3.6 S GBF CMAC system…………………………………………………...17
4.1 Closed-loop power control system………………………………………24
4.2 Simplified closed-loop power control system…………………………...26
4.3 The standard deviation σe vs. v (users = 10, data rate = 9.6 kbps, ς =0.9, d = Ts, σs = 4.3dB)……………………………………………………………. 31
4.4 The standard deviation σe vs. v (users = 10, data rate = 9.6 kbps, ς =0.9, d = Ts, σs = 4.3dB)…………………………………………………………….32
4.5 Po vs. v (users = 10, v = 80 km/h, ς = 0.9, d = Ts, σs = 4.3dB)………….33
4.6 Po vs. SINRmargin (users = 10, v = 80 km/h, ς = 0.9, d = Ts, σs = 4.3dB).34
4.7 σe vs. mobile users (ς = 0.9, d = Ts, σs = 4.3dB)………………………...35
4.8 Simplified closed-loop power control system with time-varying delay ...36
4.9 The standard deviation σe vs. v (users = 10, data rate = 9.6 kbps, ς =0.9, d = Ts, σs = 4.3dB)……………………………………………………………..39
4.10 The standard deviation σe vs. v (users = 10, data rate = 9.6 kbps, ς =0.9, d = Ts, σs = 4.3dB)……………………………………………………………..40
4.11 Po vs. v (users = 10, v = 80 km/h, ς = 0.9, d = Ts, σs = 4.3dB)…………42
4.12 Po vs. SINRmargin (users = 10, v = 80 km/h, ς = 0.9, d = Ts, σs = 4.3dB)………………………………………………………………………..43
4.13 σe vs. mobile users (ς = 0.9, d = Ts, σs = 4.3dB)……………………….44


[1] A. El-Osery, and C. Abdallah, “Distributed Power Control in CDMA Cellular
Systems”, Antennas and Propagation Magazine, Vol. 42, No. 4, August 2000.
[2] A. Chockalingam, P. Dietrich, L.B. Milstein, and R.R. Rao, “Performance of closed-
loop power control in DS-CDMA cellular systems”, IEEE Tran., Vol. 47, Issue 3,
pp. 774-789, 1998.
[3] B. S. Chen, C. Y. Yang, and S. Y. Li, “Adaptive Two-Loop Power Tracking Control
in CDMA System with the Utility Optimization”, IEEE Trans., on, Vol. 7, Issue
4, pp. 1358-1368, 2008.
[4] B. K. Lee, B. S. Chen, and S. K. Chen, “Adaptive optimal predictive power control
of cellular CDMA systems”, Control App., 2004. Pro. Of the 2004 IEEE Interna-
tional Conf. on, Vol.1, pp. 51-56, 2004.
[5] M.L. Sim, E. Gunawan, C.B. Soh, and B.H. Soong, “Characteristics of closed loop
power control algorithms for cellular DS/CDMA system”, IEEE Proc.-Commun.,
Vol. 145, No. 5, October 1998.
[6] J. Y. Lo , “The research of the Mobile Wireless Communication Fading Channel
Simulator, Institute of electrical engineering national yunlin university of science
and technology, Master of Science in electrical engineering”, June 2001.
[7] C. Y. Yang, and B. S. Chen, “Robust Power Control of CDMA cellular radio
systems with time-varying delay”, Signal Processing 90, pp. 363-372, 2010
[8] B. K. Lee, Y. H. Chen, and B. S. Chen, “Robust
H∞P owercontrolforCDMACellularCommunicationSystems”, IEEET rans.SignalP rocessing, V ol.54, No.10, pp.3947−
3956, 2006.
[9] Y. L. Hsieh, C. J. Chang, and Y. S. Chen, “A Power Control Scheme with Link Gain
Prediction Using PRNN/ERLS for DS-CDMA Cellular Mobile Systems” Proc. of IEEE
ICC 2003.
[10] H. Y. Lin, “Fuzzy-Inference Based Adaptive Filtering Techniques in Wireless Commu-
nication Systems”, National Chung Cheng University, July 2006.
[11] C. -C Lee, and R. Steele, “Closed-loop Power Control in CDMA system”, IEEE com-
munication Pro., Vol. 143, pp. 231-239, August 1996.
[12] W. Yi-Hui, “Fuzzy-based Power Control for DS/CDMA Cellular mobile communica-
tion”, Thesis for Master of science department of computer and communication Shu-Te
university, December 2003.
[13] P. R. Chang, and B. C. Wang, “Adaptive Fuzzy Power Control for CDMA Mobile Radio
Systems”, IEEE Trans. on Veh. Tech., Vol. 45, No. 2, May 1996.
[14] Y. H. Wang, “Fuzzy-Based Power Control for DS/CDMA Cellular Mobile Communi-
cation”, Department of Computer and Communication Shu-Te University, Master of
Science, September 2003.
[15] S. L. Su, Y. C. Su, and J. F. Huang, “Grey-Based Power Control for DS-CDMA Cellular
Mobile Systems”, IEEE Tran. on Veh. Tech., Vol. 49, No. 6, pp. 2081-2088, November
2000.
[16] M. Rintam¨aki, H. Koivo, and Iiro Hartimo, “Adaptive Closed-Loop power control Al-
gorithms for CDMA cellular Communication Systems”, IEEE Tran. on Veh. Tech., Vol.
53, No. 6, November 2004.
[17] J. Y. Chen, Y. H. Lin, P. S. Tsai, and S. J. Liou, “Grey FCMAC controller design”,
The journal of Gray system, pp. 223-233, 2005.
[18] K. Z. Chen, “Using credit assignment and GBF with dynamic learning rate to enhance
the ability of low-dimensional CMAC”, Thesis for Master of science department of
electrical engineering Tatung university, June 2004.
[19] K. Z. Chen ability of low-dimensional CMAC, Master of Science Department of Elec-
trical Engineering Tatung University”, June 2004.
[20] W. C. Jakes, Jr., Ed., Microwave Mobile Communications. New York: Wiley, 1974.
[21] K. W. Hsieh, K. S. Hu , and W. D. Weng,, “The design realization of the improved
Jakes fading channel simulator”, Journal of Technology, Vol. 22, No. 1, pp. 27-38, 2007.
[22] D. J. Lee, and D. H. Cho, “Data Transmission Scheduling Considering Short-Term
Fading for Transmit Power Reduction in CDMA Systems”, IEEE Tran. on Veh. Tech.,
VOL. 51, NO. 6, NOVEMBER 2002.
[23] J. Y. Lo, “The research of the mobile wireless communication fading channel simulator”,
Thesis for Master of science institute of electrical engineering national yunlin university
of science and technology, June 2001.
[24] D. J. Lee, and D. H. Cho, “Data Transmission scheduling considering short-term fading
for transmit power reduction in CDMA systems”, IEEE Trans. on Veh. Tech., Vol. 51,
No. 6, pp. 1621-1627, November 2002,.
[25] K. W. Hsieh, K. S. Hu, and W. D. Weng, “The design and realization of the improved
Jakes fading channel simulator”, Journal of Tech., Vol. 22, No. 1, pp. 27-38, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top