(3.235.191.87) 您好！臺灣時間：2021/05/14 22:30

詳目顯示:::

:

• 被引用:0
• 點閱:131
• 評分:
• 下載:0
• 書目收藏:0
 在檢定母體平均數是否相等的變異數分析方法中，其基本假設是模型誤差項為獨立的常態分布、和有相等變異數。當變異數未知且不相等時，Bishop and Dudewicz (1978) 導出二階段抽樣程序方法，而 Chen (2001) 提出一階段抽樣程序方法，分別用來檢定是否有相同的母體平均數。本文首先討論一階段與二階段抽樣程序在同樣的總樣本數下，比較不同的起始樣本n0 的表現。此外在模型誤差項為不同分布時，討論兩種抽樣程序的型一誤差與檢定力表現。
 One of the assumptions of test procedures in the conventional analysis of variance is the equality of error variances. When the variances are unknown and unequal, Bishop and Dudewicz (1978) developed an exact analysis of variance for the means of k independent normal populations by using a two-stage sampling procedure. Chen and Chen (1998) used a one-stage sampling procedure to test hypotheses of equality of means in ANOVA model. In this study, we will first thoroughly explore the optimal choice of the initial sample size, n_0, for both the one-stage and two-stage sampling procedures by simulation study. We also investigate the effect on inference about the means of the one-stage and two-stage procedures when the assumption of normality is violated.
 目錄第1 章前言············································1第2 章文獻回顧································........22.1 二階段抽樣程序(Two-stage sampling procedure)······22.2 一階段抽樣程序(One-stage sampling procedure)······3第3 章常態分布時一階段抽樣程序與二階段抽樣程序········63.1 總樣本數··········································63.2 模擬型一誤差與檢定力······························73.3 模擬結果··········································73.3.1 型一誤差········································83.3.2 檢定力··········································9第4 章常態分布時不同n10 的一階段抽樣程序·············244.1 n10 的選取·······································244.2 模擬結果·········································254.2.1 型一誤差·······································254.2.2 檢定力·········································28第5 章不同分布時一階段抽樣程序與二階段抽樣程序·······435.1 三種分布的差異性·································445.2 模擬三種分布·····································445.3 模擬結果·········································455.3.1 均勻分布型一誤差·······························465.3.2 均勻分布檢定力·································475.3.3 伽瑪分布型一誤差·······························485.3.4 伽瑪分布檢定力·································495.3.5 對數常態分布型一誤差···························495.3.6 對數常態分布檢定力·····························50i5.4 總結·············································51參考文獻·············································70附錄程式·············································71表目錄3.1 樣本數U,L,M之值, 變異數為(1, 1, 1, 1)。···············123.2 樣本數U,L,M之值, 變異數為(0.1, 0.4, 0.4, 0.9)。·······133.3 樣本數U,L,M之值, 變異數為(1, 4, 4, 9)。···············143.4 樣本數U,L,M之值, 變異數為(1, 1, 1, 9)。···············153.5 ˜ F1與˜ F2之型一誤差, 變異數為(1, 1, 1, 1)。··········163.6 ˜ F1與˜ F2之型一誤差, 變異數為(0.1, 0.4, 0.4, 0.9)。··173.7 ˜ F1與˜ F2之型一誤差, 變異數為(1, 4, 4, 9)。··········183.8 ˜ F1與˜ F2之型一誤差, 變異數為(1, 1, 1, 9)。··········193.9 ˜ F1與˜ F2之檢定力, 變異數為(1, 1, 1, 1)。············203.10 ˜ F1與˜ F2之檢定力, 變異數為(0.1, 0.4, 0.4, 0.9)。···213.11 ˜ F1與˜ F2之檢定力, 變異數為(1, 4, 4, 9)。···········223.12 ˜ F1與˜ F2之檢定力, 變異數為(1, 1, 1, 9)。···········234.1 不同n10時˜ F1U之型一誤差, 變異數為(1, 1, 1, 1)。·······················314.2 不同n10時˜ F1U之型一誤差, 變異數為(0.1, 0.4, 0.4, 0.9)。···············324.3 不同n10時˜ F1U之型一誤差, 變異數為(1, 4, 4, 9)。·······················334.4 不同n10時˜ F1M之型一誤差, 變異數為(1, 1, 1, 1)。·······················344.5 不同n10時˜ F1M之型一誤差, 變異數為(0.1, 0.4, 0.4, 0.9)。···············354.6 不同n10時˜ F1M之型一誤差, 變異數為(1, 4, 4, 9)。·······················364.7 不同n10時˜ F1U之檢定力, 變異數為(1, 1, 1, 1)。·························374.8 不同n10時˜ F1U之檢定力, 變異數為(0.1, 0.4, 0.4, 0.9)。·················384.9 不同n10時˜ F1U之檢定力, 變異數為(1, 4, 4, 9)。·························394.10 不同n10時˜ F1M之檢定力, 變異數為(1, 1, 1, 1)。·························404.11 不同n10時˜ F1M之檢定力, 變異數為(0.1, 0.4, 0.4, 0.9)。·················414.12 不同n10時˜ F1M之檢定力, 變異數為(1, 4, 4, 9)。·························42ii5.1 均勻分布時˜ F1與˜ F2之型一誤差,變異數為(1, 1, 1, 1)。....................................525.2 均勻分布時˜ F1與˜ F2之型一誤差,變異數為(0.1, 0.4, 0.4, 0.9)。............................535.3 均勻分布時˜ F1與˜ F2之型一誤差,變異數為(1, 4, 4, 9)。....................................545.4 均勻分布時˜ F1與˜ F2之之檢定力,變異數為(1, 1, 1, 1)。....................................555.5 均勻分布時˜ F1與˜ F2之之檢定力,變異數為(0.1, 0.4, 0.4, 0.9)。............................565.6 均勻分布時˜ F1與˜ F2之之檢定力,變異數為(1, 4, 4, 9)。....................................575.7 伽瑪分布時˜ F1與˜ F2之型一誤差,變異數為(1, 1, 1, 1)。....................................585.8 伽瑪分布時˜ F1與˜ F2之型一誤差,變異數為(0.1, 0.4, 0.4, 0.9)。............................595.9 伽瑪分布時˜ F1與˜ F2之型一誤差,變異數為(1, 4, 4, 9)。....................................605.10 伽瑪分布時˜ F1與˜ F2之檢定力,變異數為(1, 1, 1, 1)。....................................615.11 伽瑪分布時˜ F1與˜ F2之檢定力,變異數為(0.1, 0.4, 0.4, 0.9)。............................625.12 伽瑪分布時˜ F1與˜ F2之檢定力,變異數為(1, 4, 4, 9)。....................................635.13 對數常態分布時˜ F1與˜ F2之型一誤差,變異數為(1, 1, 1, 1)。....................................645.14 對數常態分布時˜ F1與˜ F2之型一誤差,變異數為(0.1, 0.4, 0.4, 0.9)。............................655.15 對數常態分布時˜ F1與˜ F2之型一誤差,變異數為(1, 4, 4, 9)。....................................665.16 對數常態分布時˜ F1與˜ F2之檢定力,變異數為(1, 1, 1, 1)。....................................675.17 對數常態分布時˜ F1與˜ F2之檢定力,變異數為(0.1, 0.4, 0.4, 0.9)。............................685.18 對數常態分布時˜ F1與˜ F2之檢定力,變異數為(1, 4, 4, 9)。....................................69圖目錄5.1 四種分布在平均數為4 與變異數為9 的機率密度函數........45iii
 Bishop, T.A., Dudewicz, E.J.(1978). Exact analysis of variance with unequalvariances: Test procedures and tanles. Tschnometrics, 20,419-430.Bradley, J.V.(1978). Robustness? British Journal of Mathematical and StatisticalPsychology, 31, 144-152.Chen, H.J., Lam, K.(1989). Single-stage interval estimation of the largest normalmean under heteroscedasicity. Communications in Statistics Theory and Methods,18(10), 3703-3718.Chen, S.Y., Chen, H.J.(1998). Single-stage analysis of variance under heteroscedasticity.Communications in Statistics.-simulation and computation, 27(3), 641-666.Chen, S.Y. (2001). One-stage and two-stage statistical inference under heteroscedasticity.Communications in Statistics.-simulation and computation, 30(4), 991-1009.Stein, C.M.(1945). A two-sample test for a linear hypothesis whose power isindependent of the variance. Annals of Mathematical Statistics, 16, 243-258.Wilcox, R.R.(1983) A table of percentage points of the range of independent tvariables. Technometrics, 25(2), 201-204.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 二階段抽樣程序初始樣本數的選取 2 異質性變異數分析

 無相關期刊

 1 多項式模型之共線性研究 2 基於不同相似尺度之多元整合式分群法於基因表現資料的群集分析 3 導師評鑑制度 4 雙因子套層隨機效應模型的準確容許界限 5 MIL-STD-1916計數值抽樣計畫驗證水準對某電子公司的影響研究 6 新產品開發模糊前端階段之顧客參與-以工業電腦及智慧型手機為例 7 異質性變異數分析 8 台灣的幼兒．兒童日語教育―以北部補習班為例― 9 手感品牌研究－以臺灣工藝時尚品牌「Yii」為例 10 低維度代數曲線之 Puiseux 展開式之計算 11 雙表面為波動之帶電層 12 延續法解泛函微分方程 13 平均數等價性之概度比檢定 14 RADO 不等式之一些推廣 15 阿達瑪不等式的推廣及應用

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室