(34.229.64.28) 您好!臺灣時間:2021/05/06 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾群雄
研究生(外文):Qun-Xiong Ceng
論文名稱:延續法解泛函微分方程
論文名稱(外文):A Continuation Method for Solution of Functional Differential Equation
指導教授:楊定揮
指導教授(外文):Ting-Hui Yang
口試委員:許正雄楊智烜
口試日期:2011-06-24
學位類別:碩士
校院名稱:淡江大學
系所名稱:數學學系碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:17
中文關鍵詞:延續
外文關鍵詞:Runge-Kuttacollocationcontinuationfunctional differential equationtraveling wavereaction-diffusion equationbistabledelayadvancemixtype
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於此次的研究中,針對解決離散空間上的反應擴散方程行進波問題。首先使用基於隱型Runge-Kutta演算程序(Implicit Runge-Kutta)、配置法則(Collocation Method) 等泛函微分方程(Functional Differential Equations, FDE)技巧,以上述數值計算方法處理典型 bistable型離散空間上的反應擴散方程。其中包含以延續法(Continuation Method)之數值技巧作為解決行進波問題的對策。並在文章最後列舉兩個實際實驗結果的呈現。

In this work, traveling wave solutions for reaction-diffusion equations on a discrete spatial domain are considered. We use the collocation method based on k-stage implicit Runge-Kutta scheme to compute numerically the functional differential equation which is the profile equation of some typical bistable spatial discrete reaction diffusion equation. Numerical techniques for solving the traveling wave equations include the continuation method. Finally, some numerical results are presented.

1 Introduction 1
2 Preliminaries 2
2.1 Implicit Runge-Kutta Scheme and Collocation Method . . . . 2
2.2 The linear case . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Qusilinearization for Nonlinear Case . . . . . . . . . . . . . . . 6
3 Applications : Traveling Wave Solution Problems 7
3.1 Boundary Functions and Boundary Conditions . . . . . . . . . 8
3.2 DDE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Numerical Results 12
5 Conclusions 13

[1] Kate A Abell, Christopher E Elmer, A. R Humphries, and Erik S Van
Vleck, Computation of mixed type functional di?erential boundary value
problems,SIAMJ.Appl.Dyn.Syst.4(2005),no.3,755–781(electronic).
[2] Paolo Arena, Maide Bucolo, Stefano Fazzino, Luigi Fortuna, and Mattia
Frasca, The cnn paradigm: shapes and complexity, Internat. J. Bifur.
Chaos Appl. Sci. Engrg. 15 (2005), no. 7, 2063–2090.
[3] PeterWBatesandAdamChmaj, A discrete convolution model for phase
transitions, Arch. Ration. Mech. Anal. 150 (1999), no. 4, 281–305.
[4] Jonathan Bell, Some threshold results for models of myelinated nerves,
Math. Biosci. 54 (1981), no. 3-4, 181–190.
[5] Henjin Chi, Jonathan Bell, and Brian Hassard, Numerical solution of
a nonlinear advance-delay-differential equation from nerve conduction
theory, J. Math. Biol. 24 (1986), no. 5, 583–601.
[6] Leon O Chua, Cnn: a vision of complexity, Internat. J. Bifur. Chaos
Appl. Sci. Engrg. 7 (1997), no. 10, 2219–2425.
[7] LeonOChua,MartinHasler, GeorgeSMoschytz, andJacquesNeirynck,
Autonomous cellular neural networks: a unified paradigm for pattern
formation and active wave propagation, IEEE Trans. Circuits Systems I
Fund. Theory Appl. 42 (1995), no. 10, 559–577.
[8] Christopher E Elmer and Erik S Van Vleck, Computation of traveling
waves for spatially discrete bistable reaction-diffusion equations, Appl.
Numer. Math. 20 (1996), no. 1-2, 157–169.
[9] Christopher E Elmer and Erik S Van Vleck,Analysis and computation of travelling wave solutions of bistable
differential-di?erence equations, Nonlinearity 12 (1999), no. 4, 771–798.
[10] Christopher E Elmer and Erik S Van Vleck, A variant of newton’s method for the computation of traveling
waves of bistable di?erential-di?erence equations, Journal of Dynamics
and Differential Equations 14 (2002), no. 3, 493–517.
[11] Thomas Erneux and Gr’egoire Nicolis, Propagating waves in discrete
bistable reaction-di?usion systems, Phys. D 67 (1993), no. 1-3, 237–244.
[12] James Keener and James Sneyd, Mathematical physiology. vol. i: Cel-
lular physiology, 8/ (2009), xxvi+470+A2+R45+I29.
[13] , Mathematical physiology. vol. ii: Systems physiology, 8/(2009),
i–xxvi, 471–974, A1–A2, R1–R45 and I1–I29.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔