|
[1] Taylor GI. The Current Status of Free Vascularized Bone Grafts. Clinics in Plastic Surgery 1983;10:185-209. [2] U.S and Western European Bone Graft Substitute Market. Nelesh Patel; 2006. [3] Irinakis T, Tabesh M. Preserving the Socket Dimensions with Bone Grafting in Single Sites: an Esthetic Surgical Approach When Planning Delayed Implant Placement. The Journal of Oral Implantology. 2007;33:156-63. [4] Palti A, Hoch T. A Concept for the Treatment of Various Dental Bone Defects. Implant Dentistry. 2002;11:73-8. [5] The Global Market for Orthobiologic Products. Espicom Business Intelligence; 2010. [6] Xu HH, Weir MD, Burguera EF, Fraser AM. Injectable and Macroporous Calcium Phosphate Cement Scaffold. Biomaterials. 2006;27:4279-87. [7] Ito K, Yamada Y, Nagasaka T, Baba S, Ueda M. Osteogenic Potential of Injectable Tissue-Engineered Bone: a Comparison Among Autogenous Bone, Bone Substitute (Bio-oss), Platelet-Rich Plasma, and Tissue-Engineered Bone with Respect to Their Mechanical Properties and Histological Findings. Journal of Biomedical Materials Research-Part A. 2005;73:63-72. [8] Yao CH, Liu BS, Hsu SH, Chen YS. Calvarial Bone Response to a Tricalcium Phosphate-Genipin Crosslinked Gelatin Composite. Biomaterials. 2005;26:3065-74. [9] Valle SD, Miño N, Muñoz F, González A, Planell JA, Ginebra MP. In Vivo Evaluation of an Injectable Macroporous Calcium Phosphate Cement. Journal of Materials Science: Materials in Medicine. 2007;18:353-61. [10] Xu HHK, Takagi S, Quinn JB, Chow LC. Fast-Setting Calcium Phosphate Scaffolds with Tailored Macropore Formation Rates for Bone Regeneration. Journal of Biomedical Materials Research-Part A. 2004;68:725-34. [11] Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, et al. In Vivo Behavior of Three Different Injectable Hydraulic Calcium Phosphate Cements. Biomaterials. 2004;25:1439-51. [12] Yu L, Ding J. Injectable Hydrogels as Unique Biomedical Materials. Chemical Society Reviews. 2008;37:1473-81. [13] Hou QP, De Bank PA, Shakesheff KM. Injectable Scaffolds for Tissue Regeneration. Journal of Materials Chemistry. 2004;14:1915-23. [14] Kretlow JD, Klouda L, Mikos AG. Injectable Matrices and Scaffolds for Drug Delivery in Tissue Engineering. Advanced Drug Delivery Reviews 2007;59:263-73. [15] Jabbari E, Wang S, Lu L, Gruetzmacher JA, Ameenuddin S, Hefferan TE, et al. Synthesis, Material Properties, and Biocompatibility of a Novel Self-Cross-Linkable Poly(Caprolactone Fumarate) as an Injectable Tissue Engineering Scaffold. Biomacromolecules. 2005;6:2503-11. [16] Balakrishnan B, Jayakrishnan A. Self-Cross-Linking Biopolymers as Injectable in Situ Forming Biodegradable Scaffolds. Biomaterials. 2005;26:3941-51. [17] Li Q, Wang J, Shahani S, Sun DD, Sharma B, Elisseeff JH, et al. Biodegradable and Photocrosslinkable Polyphosphoester Hydrogel. Biomaterials. 2006;27:1027-34. [18] Thomas MV, Puleo DA. Calcium Sulfate: Properties and Clinical Applications. Journal of Biomedical Materials Research-Part B Applied Biomaterials. 2009;88:597-610. [19] Al Ruhaimi KA. Effect of Adding Resorbable Calcium Sulfate to Grafting Materials on Early Bone Regeneration in Osseous Defects in Rabbits. International Journal of Oral and Maxillofacial Implants. 2000;15:859-64. [20] Schemitsch EH, Togawa D, Reid J, Bauer TW, Sakai H, Hawkins M, et al. Evaluation of the Use of Calcium Sulfate HA/TCP Composite in a Canine Metaphyseal Defect Model. Journal of Bone and Joint Surgery. 2008;90-B:66. [21] Lazáry Á, Balla B, Kósa JP, Bácsi K, Nagy Z, Takács I, et al. Effect of Gypsum on Proliferation and Differentiation of MC3T3-E1 Mouse Osteoblastic Cells. Biomaterials. 2007;28:393-9. [22] Yamaguchi T, Chattopadhyay N, Kifor O, Butters Jr RR, Sugimoto T, Brown EM. Mouse Osteoblastic Cell Line (MC3T3-E1) Expresses Extracellular Calcium (Ca2+(o))-Sensing Receptor And its Agonists Stimulate Chemotaxis and Proliferation of MC3T3-E1 Cells. Journal of Bone and Mineral Research. 1998;13:1530-8. [23] Eichler J, Hutzschenreuter P, Rosenbladt I. The Behavior of Biological Parameters in Experimental Hyperthermia. Anaesthesist. 1969;18:210-5. [24] Brown KLB, Cruess RL. Bone and Cartilage Transplantation in Orthopaedic Surgery. A review. Journal of Bone and Joint Surgery - Series A. 1982;64:270-9. [25] Gross TP, Cox QGN, Jinnah RH. History and Current Application of Bone Transplantation. Orthopedics. 1993;16:895-900. [26] Hardouin P, Anselme K, Flautre B, Bianchi F, Bascoulenguet G, Bouxin B. Tissue Engineering and Skeletal Diseases. Joint Bone Spine. 2000;67:419-24. [27] Mistry AS, Mikos AG. Tissue Engineering Strategies for Bone Regeneration. 2005. p. 1-22. [28] Mundy GR, Boyce B, Hughes D, Wright K, Bonewald L, Dallas S, et al. The Effects of Cytokines and Growth Factors on Osteoblastic Cells. Bone. 1995;17:71S-5S. [29] Hamm AW. A Histological Study of the Early Phase of Bone Repair. Journal of Bone and Joint Surgery. 1930;12:827-44. [30] Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of Bone and Cartilage by Marrow Stromal Cells in Diffusion Chambers in Vivo. Clinical Orthopaedics and Related Research. 1980:294-307. [31] Long MW. Osteogenesis and Bone-Marrow-Derived Cells. Blood Cells, Molecules, and Diseases. 2001;27:677-90. [32] Harris CT, Cooper LF. Comparison of Bone Graft Matrices for Human Mesenchymal Stem Cell-Directed Osteogenesis. Journal of Biomedical Materials Research - Part A. 2004;68:747-55. [33] Mistry AS, Mikos AG. Tissue Engineering Strategies for Bone Regeneration. Advances in Biochemical Engineering. 2005;94:1-22. [34] Roskelley CD, Srebrow A, Bissell MJ. A Hierarchy of ECM-Mediated Signalling Regulates Tissue-Specific Gene Expression. Current Opinion in Cell Biology. 1995;7:736-47. [35] Bissell MJ, Hall HG, Parry G. How Does the Extracellular Matrix Direct Gene Expression? Journal of Theoretical Biology. 1982;99:31-68. [36] Boudreau N, Myers C, Bissell MJ. From Laminin to Lamin: Regulation of Tissue-Specific Gene Expression by the ECM. Trends in Cell Biology. 1995;5:1-4. [37] Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, et al. Nucleation and Growth of Mineralized Bone Matrix on Silk-Hydroxyapatite Composite Scaffolds. Biomaterials. 2011;32:2812-20. [38] Thimm BW, Wüst S, Hofmann S, Hagenmüller H, Müller R. Initial Cell Pre-Cultivation can Maximize ECM Mineralization by Human Mesenchymal Stem Cells on Silk Fibroin Scaffolds. Acta Biomaterialia. In press. [39] Ebraheim NA, Elgafy H, Xu R. Bone-Graft Harvesting from Iliac and Fibular Donor Sites: Techniques and Complications. The Journal of the American Academy of Orthopaedic Surgeons. 2001;9:210-8. [40] Coventry MB, Tapper EM. Pelvic Instability: a Consequence of Removing Iliac Bone for Grafting. Journal Bone Joint Surgery American. 1972;54:83-101. [41] Garg A. Bone biology, Harvesting, Drafting for Dental Implant; Rationale and Clinical Applications. Chicago: Quintessence; 2004. [42] Alexander R, Christine K, Simon Z, Gerd W. Synchrotron-Tomography for Evaluation of Bone Tissue Regeneration using rapidly Resorbable Bone Substitute Materials. Euro NDT Conference; 2006:1-9. [43] Knabe C, Houshmand A, Berger G, Ducheyne P, Gildenhaar R, Kranz I, et al. Effect of Rapidly Resorbable Bone Substitute Materials on the Temporal Expression of the Osteoblastic Phenotype in Vitro. Journal Biomedical Material Research Part-A. 2008;84:856-68. [44] Branemark PI. Osseointegration and Its Experimental Background. The Journal of Prosthetic Dentistry. 1983;50:399-410. [45] Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH, et al. Engineering Bone Regeneration with Bioabsorbable Scaffolds with Novel Microarchitecture. Tissue Engineering; 1999;5:35-51. [46] Yoshikawa H, Tamai N, Murase T, Myoui A. Interconnected Porous Hydroxyapatite Ceramics for Bone Tissue Engineering. Journal of the Royal Society Interface. 2009;6 Suppl 3:S341-8. [47] Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. Osteoinduction of Porous Bioactive Titanium Metal. Biomaterials. 2004;25:443-50. [48] Xu HHK, Burguera EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials. 2007;28:3786-96. [49] Dirschl DR, Almekinders LC. Osteomyelitis. Common Causes and Treatment Recommendations. Drugs. 1993;45:29-43. [50] Lew DP, Waldvogel FA. Current concepts: Osteomyelitis. New England Journal of Medicine. 1997;336:999-1007. [51] Kapusnik JE, Parenti F, Sande MA. The Use of Rifampicin in Staphylococcal Infections. A review. Journal of Antimicrobial Chemotherapy. 1984;13:61-6. [52] Verne E, Di Nunzio S, Bosetti M, Appendino P, Vitale Brovarone C, Maina G, et al. Surface Characterization of Silver-Doped Bioactive Glass. Biomaterials. 2005;26:5111-9. [53] Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K. Antibacterial Silver-Containing Silica Glass Prepared by Sol-Gel Method. Biomaterials. 2000;21:393-8. [54] Vik H, Andersen KJ, Julshamn K, Todnem K. Neuropathy Caused by Silver Absorption from Arthroplastry Cement. Lancet. 1985;325:872-. [55] Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. An In Vitro Assessment of the Antibacterial Properties and Cytotoxicity of Nanoparticulate Silver Bone Cement. Biomaterials. 2004;25:4383-91. [56] Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnology Advances. 2008;26:1-21. [57] Lee KY, Alsberg E, Mooney DJ. Degradable and Injectable Poly(Aldehyde Guluronate) Hydrogels for Bone Tissue Engineering. Journal of Biomedical Materials Research. 2001;56:228-33. [58] Kuo CK, Ma PX. Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties. Biomaterials. 2001;22:511-21. [59] Luginbuehl V, Wenk E, Koch A, Gander B, Merkle HP, Meinel L. Insulin-Like Growth Factor I-Releasing Alginate-Tricalciumphosphate Composites for Bone Regeneration. Pharmaceutical Research. 2005;22:940-50. [60] Shoichet MS, Li RH, White ML, Winn SR. Stability of Hydrogels Used in Cell Encapsulation: An In Vitro Comparison of Alginate and Agarose. Biotechnol Bioeng. 1996;50:374-81. [61] Rowley JA, Madlambayan G, Mooney DJ. Alginate Hydrogels as Synthetic Extracellular Matrix Materials. Biomaterials. 1999;20:45-53. [62] Li QL, Chen ZQ, Darvell BW, Liu LK, Jiang HB, Zen Q, et al. Chitosan-Phosphorylated Chitosan Polyelectrolyte Complex Hydrogel as an Osteoblast Carrier. Journal Biomedical Material Reseacher Part-B Applied Biomater. 2007;82:481-6. [63] Dragan S, Cristea M, Luca C, Simionescu BC. Polyelectrolyte complexes. I. Synthesis and Characterization of Some Insoluble Polyanion-Polycation Complexes. Journal of Polymer Science, Part A: Polymer Chemistry. 1996;34:3485-94. [64] Arndt KF, Morgenstern B, Röder T. Light Scattering Studies on Polyelectrolyte Complexes. Macromolecular Symposia. 2000;162:1-21. [65] Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM. Multifunctional nanoparticulate polyelectrolyte complexes. Pharmaceutical Research. 2007;24:2353-69. [66] Wang C, Zhan R, Pu KY, Liu B. Cationic Polyelectrolyte Amplified Bead Array for DNA Detection with Zeptomole Sensitivity and Single Nucleotide Polymorphism Selectivity. Advanced Functional Materials. 2010;20:2597-604. [67] Lin YS, Renbutsu E, Morimoto M, Okamura Y, Tsuka T, Saimoto H, et al. Preparation of Stable Chitosan-Carboxymethyl Dextran Nanoparticles. Journal of Nanoscience and Nanotechnology. 2009;9:2558-65. [68] Elzatahry AA, Eldin MSM, Soliman EA, Hassan EA. Evaluation of Alginate-Chitosan Bioadhesive Beads as a Drug Delivery System for the Controlled Release of Theophylline. Journal of Applied Polymer Science. 2009;111:2452-9. [69] Zhao Q, Qian J, An Q, Sun Z. Layer-By-Layer Self-Assembly of Polyelectrolyte Complexes and Their Multilayer Films for Pervaporation Dehydration of Isopropanol. Journal of Membrane Science. 2009;346:335-43. [70] Tsai GJ, Su WH. Antibacterial Activity of Shrimp Chitosan Against Escherichia coli. Journal of Food Protection. 1999;62:239-43. [71] Jiang L, Li Y, Zhang L, Wang X. Preparation and Characterization of a Novel Composite Containing Carboxymethyl Cellulose Used for Bone Repair. Materials Science and Engineering C. 2009;29:193-8. [72] Coimbra P, Ferreira P, de Sousa HC, Batista P, Rodrigues MA, Correia IJ, et al. Preparation and Chemical and Biological Characterization of a Pectin/Chitosan Polyelectrolyte Complex Scaffold for Possible Bone Tissue Engineering Applications. International Journal of Biological Macromolecules. 2011;48:112-8. [73] Hand RJ. Calcium Sulfate Hydrates: a Review. Brit Ceram T. 1997;96:116-20. [74] Randolph DA, Negri JL, Devine TR, Gitelis S. Controlled Dissolution Pellet Containing Calcium Sulfate. United States Patent 5614206, 1997. [75] Y. Ling, Demopoulos GP. Preparation of α-Calcium Sulfate Hemihydrate by Reaction of Sulfuric Acid with Lime. Industrial & Engineering Chemistry Research. 2005;44:715-24. [76] Murashima Y, Yoshikawa G, Wadachi R, Sawada N, Suda H. Calcium Sulphate as a Bone Substitute for Various Osseous Defects in Conjunction with Apicectomy. International Endodontic Journal. 2002;35:768-74. [77] Cho BC, Park JW, Baik BS, Kim IS. Clinical Application of Injectable Calcium Sulfate on Early Bony Consolidation in Distraction Osteogenesis for the Treatment of Craniofacial Microsomia. Journal of Craniofacial Surgery. 2002;13:465-75. [78] Benoit MA, Mousset B, Delloye C, Bouillet R, Gillard J. Antibiotic-Loaded Plaster of Paris Implants Coated with Poly Lactide-co-Glycolide as a Controlled Release Delivery System for the Treatment of Bone Infections. International Orthopaedics. 1997;21:403-8. [79] Rosenblum SF, Frenkel S, Ricci JR, Alexander H. Diffusion of Fibroblast Growth Factor from a Plaster of Paris Carrier. Journal of Biomaterials Applications. 1993;4:67-72. [80] McConville JT, Ross AC, Florence AJ, Stevens HNE. Erosion Characteristics of an Erodible Tablet Incorporated in a Time-Delayed Capsule Device. Drug Development and Industrial Pharmacy. 2005;31:79-89. [81] Nilsson M, Wang JS, Wielanek L, Tanner KE, Lidgren L. Biodegradation and Biocompatability of a Calcium Sulphate-Hydroxyapatite Bone Substitute. Journal of Bone and Joint Surgery-Series B. 2004;86:120-5. [82] Urban RM, Turner TM, Hall DJ, Inoue N, Gitelis S. Increased Bone Formation Using Calcium Sulfate-Calcium Phosphate Composite Graft. Clinical Orthopaedics and Related Research. 2007:110-7. [83] Wiedeman HG, Rössler M. Thermo-Optical and Thermo-Analytical Investigations of Gypsum (Calcium Sulfate-Water). Thermochimica Acta. 1985;95:145-53. [84] Bobrov BS, Romashkov AV, Andreeva EP. Mechanism of Formation and Growth of alpha-Semihydrate Gypsum Crystals. Neorganiceskie Materialy. 1987;23:497-500. [85] Meij R, Vredenbregt LHJ, Te Winkel H. The Fate and Behavior of Mercury in Coal-Fired Power Plants. Journal of the Air & Waste Management Association . 2002;52:912-7. [86] Kappe J. Utilization of Residuals from Flue Gas Desulfurization. Environmental Progress. 1986;5:191-6. [87] Lewry AJ, Williamson J. The Setting of Gypsum Plaster-Part I The Hydration of Calcium Sulphate Hemihydrate. Journal of Materials Science. 1994;29:5279-84. [88] Zurz A. IO, F. Thiemann and K.Berghofer. Autoclave-Free Formation of α-Hemihydrate Gypsum. Journal of the American Ceramic Society. 1991;74:1117-24. [89] Freyer D, Voigt W. Crystallization and Phase Stability of CaSO4 and CaSO4-Based Salts. Monatsh Chem. 2003;134:693-719. [90] P. Wang, E. J. Lee, C. S. Park, B. H. Yoon, D. S. Shin, H. E. Kim. Calcium Sulfate Hemihydrate Powders with a Controlled Morphology for Use as Bone Cement. Journal of the American Ceramic Society. . 2008;91:2039-42. [91] Liu H, Gronthos S, Shi S. Dental Pulp Stem Cells. Methods in Enzymology. 2006. 99-113. [92] Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The Efficacy of Mesenchymal Stem Cells to Regenerate and Repair Dental Structures. Orthodontics & craniofacial research. 2005;8:191-9. [93] Arthur A, Rychkov G, Shi S, Koblar SA, Gronthose S. Adult Human Dental Pulp Stem Cells Differentiate Toward Functionally Active Neurons Under Appropriate Environmental Cues. Stem Cells. 2008;26:1787-95. [94] Gandia C, Armian ANA, Garca-Verdugo JM, Lled E, Ruiz A, Miana MD, et al. Human Dental Pulp Stem Cells Improve Left Ventricular Function, Induce Angiogenesis, and Reduce Infarct Size in Rats with Acute Myocardial Infarction. Stem Cells. 2008;26:638-45. [95] Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent Mesenchymal Stem Cells with Immunosuppressive Activity can be Easily Isolated from Dental Pulp. Transplantation. 2005;80:836-42. [96] Király M, Kádár K, Horváthy DB, Nardai P, Rácz GZ, Lacza Z, et al. Integration of Neuronally Predifferentiated Human Dental Pulp Stem Cells into Rat Brain in vivo. Neurochemistry International. In press. [97] d''Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, et al. Human Postnatal Dental Pulp Cells Co-differentiate into Osteoblasts and Endotheliocytes: A Pivotal Synergy Leading to Adult Bone Tissue Formation. Cell Death and Differentiation. 2007;14:1162-71. [98] Riccio M, Resca E, Maraldi T, Pisciotta A, Ferrari A, Bruzzesi G, et al. Human Dental Pulp Stem Cells Produce Mineralized Matrix in 2D and 3D Cultures. European Journal of Histochemistry. 2010;54:205-13. [99] De Mendonca Costa A, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, et al. Reconstruction of Large Cranial Defects in Nonimmunosuppressed Experimental Design with Human Dental Pulp Stem Cells. Journal of Craniofacial Surgery. 2008;19:204-10. [100] D''Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A, et al. Human Mandible Bone Defect Repair by the Grafting of Dental Pulp Stem/Progenitor Cells and Collagen Sponge Biocomplexes. European Cells and Materials. 2009;18:75-83. [101] Chiang PC. Influence of Magnetic Cryopreservation on the Dental Pulp Stem cells. 2010. [102] Brown C. Method of Producing Calcium Sulfate Alpha Hemihydrate 20020164281. United States Patent, 2003. [103] Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26:3919-28. [104] Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, et al. In Vitro Biological Effects of Titanium Rough Surface Obtained by Calcium Phosphate Grid Blasting. Biomaterials. 2005;26:157-65. [105] Dai Z, Yin J, Yan S, Cao T, Ma J, Chen X. Polyelectrolyte Complexes Based on Chitosan and Poly (L-Glutamic Acid). Polymer International. 2007;56:1122-7. [106] Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of Nanoparticles Composed of Chitosan/Poly-Gamma-Glutamic Acid and Evaluation of Their Permeability Through Caco-2 cells. Biomacromolecules. 2005;6:1104-12. [107] Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel Biodegradable Chitosan-Gelatin/Nano-Bioactive Glass Ceramic Composite Scaffolds for Alveolar Bone Tissue Engineering. Chemical Engineering Journal. 2010;158:353-61. [108] Karageorgiou V, Kaplan D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials. 2005;26:5474-91. [109] Cho SH, Na YE, Ahn YJ. Growth-Inhibiting Effects of Seco-Tanapartholides Identified in Artemisia Princeps Var. Orientalis Whole Plant on Human Intestinal Bacteria. Journal of Applied Microbiology. . 2003;95:7-12. [110] Tischler M, Misch CE. Extraction Site Bone Grafting in General Dentistry: Review of Applications and Principles. Dentistry Today. 2004;23:108+10-13. [111] Bobrov BS, Romashkov AV, Andreeva EP. Mechanism of Formation and Growth of Alpha-Hemihydrate Gypsum Crystals. Inorganic Materials 1987;23:437-9. [112] Guan B, Yang L, Wu Z, Shen Z, Ma X, Ye Q. Preparation of α-Calcium Sulfate Hemihydrate from FGD Gypsum in K, Mg-Containing Concentrated CaCl2 Solution under Mild Conditions. Fuel. 2009;88:1286-93. [113] Z. Li, Demopoulos GP. Model-Based Construction of Calcium Sulfate Phase-Transition Diagrams in the HCl-CaCl2-H2O System Between 0 and 100 oC. Industrial & Engineering Chemistry Research. 2006;45:4517-24. [114] Partridge EP, White AH. The Solubility of Calcium Sulfate from 0 to 200°. Journal of the American Chemical Society. 1929;51:360-70. [115] Dahlgren SE. Calcium Sulfate Transitions in Superphosphate. Journal of Agricultural and Food Chemistry. 1960;8:411-2. [116] Guan B, Ma X, Wu Z, Yang L, Shen Z. Crystallization Routes and Metastability of α-Calcium Sulfate Hemihydrate in Potassium Chloride Solutions Under Atmospheric Pressure. Journal of Chemical & Engineering Data. 2009;54:719-25. [117] J. A. Dirksen, T. A. Ring. Fundamentals of Crystallization: Kinetic Effects on Particle Size Distributions and Morphology. Chemical Engineering Science.. 1991;46:2389-427. [118] Hamdona SK, Al Hadad UA. Crystallization of Calcium Sulfate Dihydrate in the Presence of Some Metal Ions. Journal of Crystal Growth. 2007;299:146-51. [119] Di Profio G, Curcio E, Drioli E. Supersaturation Control and Heterogeneous Nucleation in Membrane Crystallizers: Facts and Perspectives. Industrial and Engineering Chemistry Research. 2010;49:11878-89. [120] Baohong Guan, Zhuoxian Shen, Zhongbiao Wu, Liuchun Yang, Ma X. Effect of pH preparation of Alpha-Calcium Sulfate Hemihydrate from FGD Gypsum with the Hydrothermal Method. Journal of the American Ceramic Society . 2008;91:1-6. [121] Moussaouiti ME, Boistelle R, Bouhaouss A, Klein JP. Crystallization of Calcium Sulphate Hemihydrate in Concentrated Phosphoric Acid Solutions. Chemical Engineering Journal. 1997;68:123-30. [122] Guan B, Fu H, Yu J, Jiang G, Kong B, Wu Z. Direct Transformation of Calcium Sulfite to α-Calcium Sulfate Hemihydrate in a Concentrated Ca-Mg-Mn Chloride Solution under Atmospheric Pressure. Fuel. 2011;90:36-41. [123] Zhibao Li, Demopoulos GP. Solubility of CaSO Phase in Aqueous HCl + CaCl Solutions from 283K to 353K. Journal of Chemical and Engineering Data. 2005;50:1971-82. [124] J. A. Dirksen and T. A. Ring. Fundamentals of Crystallization: Kinetic Effects on Particle Size Distributions and Morphology. Chemical Engineering Science. 1991;46:2389-427. [125] Peng Wang E-JL, Chee-Sung Park, Byung-Ho Yoon, Du-Sik Shin, and Hyoun-Ee Kim**,. Calcium Sulfate Hemihydrate Powders with a Controlled Morphology for Use as Bone Cement. Journal of the American Ceramic Society. 2008;91:2039-42. [126] Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of γ-PGA/Chitosan Composite Tissue Engineering Matrices. Biomaterials. 2005;26:5617-23. [127] Todd DD. Handbook of Industrial Mixing: Science and Practice. In: Paul EL, Atiemo-Obeng VA, M. KS, editors. Mixing of Highly Viscous Fluids, Polymers, and Pastes. New Jersey: J. Wiley & Son; 2004. p. 987–1025. [128] Xu HHK, Simon Jr CG. Fast Setting Calcium Phosphate-Chitosan Scaffold: Mechanical Properties and Biocompatibility. Biomaterials. 2005;26:1337-48. [129] Tan H, Chu CR, Payne KA, Marra KG. Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. 2009;30:2499-506. [130] Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, et al. Injectable Chitosan-Based Hydrogels for Cartilage Tissue Engineering. Biomaterials. 2009;30:2544-51. [131] Sumi VS, Kala R, Praveen RS, Prasada Rao T. Imprinted Polymers as Drug Delivery Vehicles for Metal-Based Anti-Inflammatory Drug. International Journal of Pharmaceutics. 2008;349:30-7. [132] Karg M, Pastoriza-Santos I, Rodriguez-González B, Von Klitzing R, Wellert S, Hellweg T. Temperature, pH, and Ionic Strength Induced Changes of the Swelling Behavior of PNIPAM-poly(allylacetic acid) Copolymer Microgels. Langmuir. 2008;24:6300-6. [133] Hong Y, Mao Z, Wang H, Gao C, Shen J. Covalently Crosslinked Chitosan Hydrogel Formed at Neutral pH and Body Temperature. Journal of Biomedical Materials Research - Part A. 2006;79:913-22. [134] Frey G, Lu H, Powers J. Effect of Mixing Methods on Mechanical Properties of Alginate Impression Materials. Journal of Prosthodontics. 2005;14:221-5. [135] Inoue K, Song YX, Kamiunten O, Oku J, Terao T, Fujii K. Effect of Mixing Method on Rheological Properties of Alginate Impression Materials. Journal of Oral Rehabilitation. 2002;29:615-9. [136] Arpornmaeklong P, Pripatnanont P, Suwatwirote N. Properties of Chitosan-Collagen Sponges and Osteogenic Differentiation of Rat-Bone-Marrow Stromal Cells. International Journal of Oral and Maxillofacial Surgery. 2008;37:357-66. [137] Peter M, Ganesh N, Selvamurugan N, Nair SV, Furuike T, Tamura H, et al. Preparation and Characterization of Chitosan-Gelatin/Nanohydroxyapatite Composite Scaffolds for Tissue Engineering Applications. Carbohydrate Polymer. 2009;80:687-94. [138] Vishu Kumar BA, Varadaraj MC, Tharanathan RN. Low Molecular Weight Chitosan-Preparation with the Aid of Pepsin, Characterization, and Its Bactericidal Activity. Biomacromolecules. 2007;8:566-72. [139] Wang C-C, Su C-H, Chen J-P, Chen C-C. An Enhancement on Healing Effect of Wound Dressing: Acrylic Acid Grafted and Gamma-Polyglutamic Acid/Chitosan Immobilized Polypropylene Non-Woven. Materials Science and Engineering: C. 2009;29:1715-24. [140] No HK, Young Park N, Ho Lee S, Meyers SP. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. International Journal of Food Microbiology. 2002;74:65-72. [141] Huang S, Fu X. Cell Behavior on Microparticles with Different Surface Morphology. Journal of Alloys and Compounds. 2010;493:246-51. [142] Zan Q, Wang C, Dong L, Cheng P, Tian J. Effect of Surface Roughness of Chitosan-Based Microspheres on Cell Adhesion. Applied Surface Science. 2008;255:401-3. [143] Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of Gamma-PGA/Chitosan Composite Tissue Engineering Matrices. Biomaterials. 2005;26:5617-23. [144] Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL, Han JL, et al. Antibacterial Activity and Biocompatibility of a Chitosan-Gamma-Poly(Glutamic Acid) Polyelectrolyte Complex Hydrogel. Carbohydry Polymer. 2010;345:1774-80. [145] Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, et al. Repair of Bone Defects Using Synthetic Mimetics of Collagenous Extracellular matrices. Nature Biotechnology. 2003;21:513-8. [146] Varum KM, Myhr MM, Hjerde RJN, Smidsrod O. In Vitro Degradation Rates of Partially N-Acetylated Chitosans in Human Serum. Carbohydry Polymer. 1997;299:99-101. [147] Buescher JM, Margaritis A. Microbial Biosynthesis of Polyglutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries. Critical Reviews in Biotechnology. 2007;27:1-19. [148] Martson M, Viljanto J, Hurme T, Saukko P. Biocompatibility of Cellulose Sponge with Bone. European Surgical Research. 1998;30:426-32. [149] Oltramari PVP, Navarro RL, Henriques JFC, Capelozza ALA, Granjeiro JM. Dental and Skeletal Characterization of the BR-1 Minipig. Veterinary Journal. 2007;173:399-407. [150] Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal Models for Implant Biomaterial Research in Bone: A Review. European Cells and Materials. 2007;13:1-10. [151] Palmieri A, Pezzetti F, Brunelli G, Scapoli L, Lo Muzio L, Scarano A, et al. Calcium Sulfate Acts on the miRNA of MG63E Osteoblast-Like Cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2008;84:369-74. [152] Ogawa R. The Importance of Adipose-Derived Stem Cells and Vascularized Tissue Regeneration in the Field of Tissue Transplantation. Current stem cell research & therapy. 2006;1:13-20. [153] Evans ND, Gentleman E, Polak JM. Scaffolds for Stem Cells. Materials Today. 2006;9:26-33.
|