一、中文部分
1.王春展(1997)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-92。2.任宗浩(2001):心智模式動態變化之研究-物理現象的觀察與詮釋。科學教育學刊,9(2),147-168。3.何致億(2007)。Lego Mindstorms NXT智慧型樂高機器人與Java程式開發。臺北市:精誠資訊。
4.岳修平譯(1998)。教學心理學:學習的認知基礎(E. D. Gagne, C. W. Yekovich, F. R. Yekovich著,The cognitive psychology of school learning,初版)。臺北市:遠流。
5.林天祐(2005)。教育研究倫理準則。教育研究月刊,132,70-86。6.吳武雄、蔡哲銘、邱美虹、常月如、葉昭松(2009)。以建模與認知師徒制開發新興科技融入高中課程之教學研究。科學教育月刊,319,2-7。
7.邱美虹(2007)。模型與建模能力之理論架構與研究工具之開發。中華民國第二十三屆科學教育學術研討會,國立高雄師範大學。
8.邱美虹、林靜雯(2002)。以多重類比探究兒童電流心智模式之改變。科學教育學刊,10(2),109-134。
9.邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。10.洪維恩(2004)。C語言教學手冊(第三版)。新北市:博碩文化。
11.張志康、邱美虹(2009):建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。12.張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。未出版博士論文,國立臺灣師範大學科學教育研究所,臺北市。13.曾吉弘、謝宗翰、侯俊宇(2009)。機器人新視界NXC與NXT。臺北市:藍海文化。
14.蔡錦豐(2009):LEGO MINDSTORMS提升國小學童問題解決能力與科學態度之研究。未出版碩士論文,國立台東大學教育系教學科技研究所,未出版,臺東縣。15.謝亞錚(2009):機器人輔助程式設計教學之學習成效與學生心智模型探討。
未出版碩士論文,國立臺灣師範大學資料教育研究所,臺北市。
二、西文部分
1.Buckley, B. C. & Boulter, C. J.(2000).Investigating the role of representations and expressed models in building metal models.In J. K.Gilbert & C. J. Boulter(Eds.),Developing models in science education(p.119-135).Netherlands: Kluwer Academic Publishers.
2.Cañas J. J., Bajo M. T., Gonzalov P. (1994). Mental models and computer programming . International Journal of Human-Computer Studies, 40(5), 795-811.
3.Corritore, C. L. & Wiedenbeck, S. (1999). Mental representation of expert procedural and object-oriented programmers in a software maintenance task . International Journal of Human-Computer Studies, 50(1), 61-83.
4.Craik, K. (1943). The nature of explanation.Cambridge, England: Cambridge
University Press.
5.Gilbert, S. W. (1991). Model building and definition of science . Journal of Research in Science Teaching, 28, 73-79.
6.Gilbert, J., & Boulter, C. (1998). Learning science through models and modeling . In B. Fraser & K. Tobin (Eds), International Handbook of Science Education (pp. 52-66).
7.Greca, I. M., & Moreira, M. A., (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
8.Griffin, T. (2010).The Art of Lego Mindstorms NXT-G Programing. William Pollock. San Francisco.
9.Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and theiruse in science education: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
10. Götschi, T., Sanders, I., & Galpin, V. (2006). Mental models of recursion revisited. ACM SIGCSE Bulletin, 55(1), 138-142.
11. Götschi, T., Sanders, I., & Galpin, V. (2003). Mental models of recursion. ACM SIGCSE Bulletin, 35(1), 346-350.
12.Halloun, I. (1996). Schematic modeling for meaningful learning of physics . Journal of Research in Science Teaching, 33, 1019-1041.
13.Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models . International Journal of Science Education, 22(9), 1011-1026.
14.Justi, R. S., & Driel, J. v. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling . Research in Science Education, 35(2-3), 197-219.
15.Justi, R. S. & Gilbert, J. K. (2002a). Modeling, teachers’ views on the nature of modelling, and implications for the education of modelers . International Journal of Science Education, 24(4), 369-387.
16.Justi, R. S., & Gilbert, J. K. (2002b). Modeling, Teacher’s views on the nature of modeling, and implications for the education of modelers . International Journal of Science Education, 24(4), 369-387.
17.Justi, R. S. & Gilbert, J. K. (2003). Teachers’ views on the nature of models . International Journal of Science Education, 25(11), 1369-1386.
18.Johnson-Laird P. N. (1983). Mental models . Cambridge, MA: Harvard University Press.Senge, P. (1990). The fifth discipline: The art and practice of the learning organization. New York: Doubleday/Currency.
19. Linn, M. C., & Clancy, M. J. (1992). The case for case studies of programming problems. Communications of the ACM, 35(3), 121-132.
20.Ma, L., Ferguson, J., Roper, M., & Wood, M. (2006). Investigating novice programmers' mental models . Technical report , the EFoCS Group, University of Strathclyde, http://www.cis.strath.ac.uk/~linxiao/TechReport2006.doc.
21.Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of mental models held by novice programmers . ACM SIGCSE Bulletin, 39(1), 499-503.
22.Moundridou, M., & Kalinoglou, A. (2008). Using Lego Mindstorms as an instructionalaid in technical and vocational secondary education : Experiences from an empirical case study. In P. Dillenbourg & M. Specht ( Eds.), Times of convergence : Technologies across learning contexts (pp. 312-321). Maastricht, Netherlands: Springer-Verlag.
23. Pennington, N., (1987). Stimulus structures and mental representations in expert comprehension of compuer programs . Cognitive psychology , 19(3), 295-341.
24.Ramalingam , V., LaBelle, D.,& Wiedenbeck, S. (2004). Self-efficacy and mental models in learning to program . ACM SIGCSE Bulletin, 36(3), 171-175.
25.Senge, P. (1990). The fifth discipline: The art and practice of the learning
organization . New York: Doubleday/Currency.
26.Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. V. (2005). The difficult process of scientific modeling : An analysis of novices’ reasoning during computer-based modelling. International Journal of Science Education, 27(14),1695-1721.
27.Vosniadou, S. (1994). Capturing and modeling the process of conceptual change .
Learning and Instruction, 4, 45-69.
28.Wiedenbeck, S. & Ramalingam, V. (1999). Novice comprehension of small programs written in the procedural and object-oriented styles . International Journal of Human-Computer Studies, 51(1), 71-87.