跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林怡瑾
論文名稱:生手學生與專家教師使用圖形化程式(NXT-G)之心智模式及建模歷程
論文名稱(外文):Novice Students' and Expert Teachers' Mental Models and Modeling Processes in NXT-G
指導教授:林靜雯博士
學位類別:碩士
校院名稱:臺北市立教育大學
系所名稱:自然科學系碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:126
中文關鍵詞:生手學生與專家教師建模歷程個案研究程式概念的心智模式圖形化程式
相關次數:
  • 被引用被引用:1
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於探究Lego Mindstorms圖形化程式編輯環境NXT-G軟體(以下簡稱NXT-G)下,生手學生與專家教師對於「迴圈」與「分岔」兩程式概念理解與設計時,可能產生的心智模式與建模歷程,並比較生手學生與專家教師其產生之心智模式與建模歷程之間的差異處。研究以個案研究方式進行。首先,研究者以立意取樣方式,選擇臺北市某國小五年級一般智能資賦優異學生六位及兩位熟稔NXT-G的專家教師為研究對象。研究工具包括修改自2009、2011年雙北市校際盃機器人選拔賽「程式概念檢測題」、研究者自編「程式概念理解測驗」與半結構式晤談為研究工具。研究者從「程式概念檢測題」中擷取學生圖形化程式設計之螢幕及事後晤談,並配合學生於「程式概念理解測驗」中的答題情形,來分析學生程式中「迴圈」與「分岔」的心智模式,而專家教師部分亦是從「程式概念檢測題」中擷取圖形化程式設計之螢幕及事後晤談,來分析專家教師程式中「迴圈」與「分岔」的心智模式。至於建模歷程,研究者以Justi 和 Gilbert (2002)發展的建模架構模式,分析學生與教師於進行「程式概念檢測題」時建立心智模式的過程。結果發現:生手學生所呈現的迴圈程式心智模式可分為「Loop Model」及「Step Model」,而分岔程式心智模式可分為「single-Switch Model」、「multi-Switch Model」及「Odd Model」;而專家教師在迴圈所呈現的程式概念心智模式有「Variable Loop Model」及「Nested Loops Model」,而分岔心智模式為「multi-Switch Model」。而迴圈與分岔程式概念建模歷程部分,生手學生所呈現的建模歷程是局部循環的,且其認為迴圈的建模較為容易,易於類化至相似情境或程式概念中;而分岔程式的建模則需清楚的邏輯思考,若欲判斷兩種以上條件時,更需清楚了解每個判斷條件之間的關係及程式邏輯,故生手學生不易建模成功。而專家教師在迴圈與分岔程式概念建模歷程,由於已具備了相關解題經驗及解題「策略模組」,會從其既有經驗及資源中選擇適當解題的心智模式,因此解題時歷程較有效率且能考慮模型的限制。教師與學生之間本來就存在有概念基礎上的差異,若能讓專家教師特定的解題策略模組設計成為「板型(template)」讓學生學習,應可減少學生摸索及試誤的時間,而達成更有效率的學習。
The purpose of this study was to explore the possible mental models and modeling processes formed during the comprehension and programming of the two programming concepts, “loop” and “switch”, for novice students and expert teachers in NXT-G, a graphical programming environment software, and to compare and identify the differences in mental models and modeling processes between novice students and expert teachers. The study was conducted in case studies. First, six fifth-grade intelligently talented students from one Taipei municipal elementary school and two expert teachers familiar with NXT-G were selected as study subjects by purposive sampling. Study tools included modified “Test on Programming Concepts” of Robotics School Cup Qualifier 2009 and 2011, “Comprehension Test on Programming Concepts” developed by the author and semi-structured interviews. The author captured students’ test screens of graphical program in “Test on Programming Concepts” and conducted post-interviews with students to analyze their mental models of “loop” and “switch” with additional data from their results of “Comprehension Test on Programming Concepts.” For expert teachers, their test screens of graphical program in “Test on Programming Concepts” were captured and their post-interviews were conducted to analyze their mental models of “loop” and “switch.” For modeling processes, the author applied the model of modeling framework developed by Justi and Gilbert (2002) to analyze teachers’ and students’ modeling processes in “Test on Programming Concepts.” The results showed that the mental models of loop for novice students could be divided into “Loop Model” and “Step Model” while those of switch were divided as “single-Switch Model,” “multi-Switch Model” and “Odd Model”; expert teachers’ mental models of programming concept for loop were “Variable Loop Model” and “Nested Loops Model” whereas those for switch were “multi-Switch Model.” The modeling processes for loop and switch for novice students were in partially cyclic processes. It was easier for them to model loop and to generalize it to similar scenarios or in programming concepts; the concept of switch required clear logical thinking. If the concept was combined with more than one condition, students needed to clearly understand the relationship between each condition and program logic, making successful modeling less easy for novice students. Equipped with existing related experience and “strategy modules” in solving questions, expert teachers selected appropriate mental models to solve the problems based on their existing experience and resource in their modeling processes of programming concepts for loop and switch. There must be fundamental differences between teachers and students. More efficient learning and reduction in the time for exploration and trial and error for students would be achieved if expert teachers’ specific solving strategy modules are designed as “templates” for students to learn.

Key Words:Novice Student and Expert Teacher, Modeling Process, Case Study, mental model of Programming Concepts, Graphical Program

摘 要.....................................................i
目 次.....................................................v
表 次...................................................vii
圖 次....................................................ix
第一章 緒論...............................................1
第一節 研究背景及重要性............................1
第二節 研究目的與待答問題..........................3
第三節 名詞釋義....................................4
第四節 研究範圍與限制..............................6
第二章 文獻探討...........................................9
第一節 Lego Mindstorms圖形化程式...................9
第二節 心智模式與建模歷程之相關研究...............15
第三節 專家與生手概念理解之差異與建模歷程.........22
第三章 研究方法..........................................29
第一節 研究設計與架構.............................29
第二節 研究對象...................................32
第三節 研究者背景與角色...........................34
第四節 研究工具...................................35
第五節 研究流程...................................40
第六節 資料收集與分析.............................43
第七節 研究倫理...................................48
第四章 研究發現與討論....................................51
第一節 生手學生與專家教師程式概念的心智模式.......51
第二節 生手學生與專家教師程式概念的建模歷程.......67
第三節 生手學生與專家教師程式概念上的差異.........87
第五章 結論與建議........................................91
第一節 結論.......................................91
第二節 建議.......................................95
參考文獻.................................................97
一、中文部分......................................97
二、西文部分......................................98
附 錄...................................................101
附錄一...........................................101
附錄二...........................................109
附錄三...........................................114
附錄四...........................................120
附錄五...........................................124
附錄六...........................................126

一、中文部分
1.王春展(1997)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-92。
2.任宗浩(2001):心智模式動態變化之研究-物理現象的觀察與詮釋。科學教育學刊,9(2),147-168。
3.何致億(2007)。Lego Mindstorms NXT智慧型樂高機器人與Java程式開發。臺北市:精誠資訊。
4.岳修平譯(1998)。教學心理學:學習的認知基礎(E. D. Gagne, C. W. Yekovich, F. R. Yekovich著,The cognitive psychology of school learning,初版)。臺北市:遠流。
5.林天祐(2005)。教育研究倫理準則。教育研究月刊,132,70-86。
6.吳武雄、蔡哲銘、邱美虹、常月如、葉昭松(2009)。以建模與認知師徒制開發新興科技融入高中課程之教學研究。科學教育月刊,319,2-7。
7.邱美虹(2007)。模型與建模能力之理論架構與研究工具之開發。中華民國第
二十三屆科學教育學術研討會,國立高雄師範大學。
8.邱美虹、林靜雯(2002)。以多重類比探究兒童電流心智模式之改變。科學教
育學刊,10(2),109-134。
9.邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
10.洪維恩(2004)。C語言教學手冊(第三版)。新北市:博碩文化。
11.張志康、邱美虹(2009):建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。
12.張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。未出版博士論文,國立臺灣師範大學科學教育研究所,臺北市。
13.曾吉弘、謝宗翰、侯俊宇(2009)。機器人新視界NXC與NXT。臺北市:藍海文化。

14.蔡錦豐(2009):LEGO MINDSTORMS提升國小學童問題解決能力與科學態度之研究。未出版碩士論文,國立台東大學教育系教學科技研究所,未出版,臺東縣。
15.謝亞錚(2009):機器人輔助程式設計教學之學習成效與學生心智模型探討。
未出版碩士論文,國立臺灣師範大學資料教育研究所,臺北市。

二、西文部分
1.Buckley, B. C. & Boulter, C. J.(2000).Investigating the role of representations and expressed models in building metal models.In J. K.Gilbert & C. J. Boulter(Eds.),Developing models in science education(p.119-135).Netherlands: Kluwer Academic Publishers.
2.Cañas J. J., Bajo M. T., Gonzalov P. (1994). Mental models and computer programming . International Journal of Human-Computer Studies, 40(5), 795-811.
3.Corritore, C. L. & Wiedenbeck, S. (1999). Mental representation of expert procedural and object-oriented programmers in a software maintenance task . International Journal of Human-Computer Studies, 50(1), 61-83.
4.Craik, K. (1943). The nature of explanation.Cambridge, England: Cambridge
University Press.
5.Gilbert, S. W. (1991). Model building and definition of science . Journal of Research in Science Teaching, 28, 73-79.
6.Gilbert, J., & Boulter, C. (1998). Learning science through models and modeling . In B. Fraser & K. Tobin (Eds), International Handbook of Science Education (pp. 52-66).
7.Greca, I. M., & Moreira, M. A., (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
8.Griffin, T. (2010).The Art of Lego Mindstorms NXT-G Programing. William Pollock. San Francisco.
9.Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and theiruse in science education: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
10. Götschi, T., Sanders, I., & Galpin, V. (2006). Mental models of recursion revisited. ACM SIGCSE Bulletin, 55(1), 138-142.
11. Götschi, T., Sanders, I., & Galpin, V. (2003). Mental models of recursion. ACM SIGCSE Bulletin, 35(1), 346-350.
12.Halloun, I. (1996). Schematic modeling for meaningful learning of physics . Journal of Research in Science Teaching, 33, 1019-1041.
13.Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models . International Journal of Science Education, 22(9), 1011-1026.
14.Justi, R. S., & Driel, J. v. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling . Research in Science Education, 35(2-3), 197-219.
15.Justi, R. S. & Gilbert, J. K. (2002a). Modeling, teachers’ views on the nature of modelling, and implications for the education of modelers . International Journal of Science Education, 24(4), 369-387.
16.Justi, R. S., & Gilbert, J. K. (2002b). Modeling, Teacher’s views on the nature of modeling, and implications for the education of modelers . International Journal of Science Education, 24(4), 369-387.
17.Justi, R. S. & Gilbert, J. K. (2003). Teachers’ views on the nature of models . International Journal of Science Education, 25(11), 1369-1386.
18.Johnson-Laird P. N. (1983). Mental models . Cambridge, MA: Harvard University Press.Senge, P. (1990). The fifth discipline: The art and practice of the learning organization. New York: Doubleday/Currency.
19. Linn, M. C., & Clancy, M. J. (1992). The case for case studies of programming problems. Communications of the ACM, 35(3), 121-132.
20.Ma, L., Ferguson, J., Roper, M., & Wood, M. (2006). Investigating novice programmers' mental models . Technical report , the EFoCS Group, University of Strathclyde, http://www.cis.strath.ac.uk/~linxiao/TechReport2006.doc.
21.Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of mental models held by novice programmers . ACM SIGCSE Bulletin, 39(1), 499-503.
22.Moundridou, M., & Kalinoglou, A. (2008). Using Lego Mindstorms as an instructionalaid in technical and vocational secondary education : Experiences from an empirical case study. In P. Dillenbourg & M. Specht ( Eds.), Times of convergence : Technologies across learning contexts (pp. 312-321). Maastricht, Netherlands: Springer-Verlag.
23. Pennington, N., (1987). Stimulus structures and mental representations in expert comprehension of compuer programs . Cognitive psychology , 19(3), 295-341.
24.Ramalingam , V., LaBelle, D.,& Wiedenbeck, S. (2004). Self-efficacy and mental models in learning to program . ACM SIGCSE Bulletin, 36(3), 171-175.
25.Senge, P. (1990). The fifth discipline: The art and practice of the learning
organization . New York: Doubleday/Currency.
26.Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. V. (2005). The difficult process of scientific modeling : An analysis of novices’ reasoning during computer-based modelling. International Journal of Science Education, 27(14),1695-1721.
27.Vosniadou, S. (1994). Capturing and modeling the process of conceptual change .
Learning and Instruction, 4, 45-69.
28.Wiedenbeck, S. & Ramalingam, V. (1999). Novice comprehension of small programs written in the procedural and object-oriented styles . International Journal of Human-Computer Studies, 51(1), 71-87.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top