(18.206.238.77) 您好!臺灣時間:2021/05/18 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖沂嘉
研究生(外文):Yi-Chia Liao
論文名稱:鋯基金屬玻璃薄膜之常溫腐蝕行為探討
論文名稱(外文):The study on the corrosion resistance of Zr-based metallic glass thin films prepared by the pulsed DC magnetron sputter system
指導教授:黃仁清黃仁清引用關係李志偉李志偉引用關係
指導教授(外文):Jen-Ching HuangJyh-Wei Lee
口試委員:朱瑾
口試委員(外文):Jinn. P. Chu
口試日期:1000725
學位類別:碩士
校院名稱:東南科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:140
中文關鍵詞:鋯基金屬玻璃絲狀腐蝕間隙腐蝕非晶磁控濺鍍電化學
外文關鍵詞:Zr-based TFMGfiliform corrosioncrevice corrosionamorphousmagnetron sputteringelectrochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以脈衝直流磁控濺鍍系統鍍製鋯基金屬玻璃薄膜,使用鋯銅鋁鎳合金靶材與純鋯金屬靶材進行共鍍。
鍍製後之薄膜分別進行成分、晶相、薄膜硬度、表面與截面形貌分析。
為了探討鋯基金屬玻璃於鹽酸與硫酸水溶液中的抗蝕效果,分別於1mM HCl水溶液與 1mM H2SO4水溶液中以腐蝕電位儀進行動電位腐蝕試驗,
並使用電化學原子力顯微鏡(ECAFM)於1mM HCl水溶液中進行循環電位試驗。
由實驗結果顯示,鋯基金屬玻璃薄膜表面平整且具有高硬度,其截面呈現緻密且無柱狀晶結構,由高解析穿透電子顯微鏡之電子繞射圖呈現典型的環狀光暈圖樣,由此可確認薄膜為非晶質結構。
從動電位腐蝕試驗結果得知鋯基金屬玻璃薄膜鍍製於SUS420底材的鋯基金屬玻璃薄膜有最好的抗蝕效果,其中薄膜對於1mM H2SO4腐蝕溶液的抗蝕性比在1mM HCl腐蝕溶液者差,顯示該薄膜在含氯離子之水溶液環境的抗蝕性較佳。
薄膜腐蝕型態會由孔蝕、間隙腐蝕與絲狀腐蝕循序漸進的發生,並於絲狀腐蝕後形成許多以鋯為主的非晶質氧化物結構。
形貌分為奈米線與奈米蟲狀結構等。
由於薄膜發生腐蝕的位置相當隨機,因此電化學原子力顯微鏡於掃描範圍內並無發現明顯的腐蝕變化。
經過掃描電子顯微鏡觀察可觀察到在循環電位試驗後的薄膜表面發現會形成樹枝狀純銅結晶與方形顆粒氧化亞銅與氯化亞銅的混合生成物。

The Zr-based thin film metallic glasses (TFMGs) were co-deposited on Si and SUS420 substrates using a Zr-Cu-Ni-Al alloy and pure Zr metal targets by a pulsed DC magnetron sputtering system. The chemical compositions, crystalline structures, microstructures and hardness of Zr-based TFMG were investigated.
The corrosion behavior of Zr-based TFMG in hydrochloric and sulfuric acid aqueous solutions was evaluated by a potentiodynamic polarization test. And the cyclic voltammetry test was executed in 1mM HCl aqueous solution by using an electrochemical atomic force microscope (ECAFM).
The results showed that the surface morphologies of Zr-based TFMG were very smooth, and a high hardness value was found for the Zr-based TFMG. According to cross-section images, a compact and dense structure without columnar structures was observed. The amorphous structure of Zr-based TFMG was characterized by the XRD and TEM analyses.
After potentiodynamic polarization test, the better corrosion resistance was achieved for Zr-based TFMG coated on SUS420 in 1mM HCl aqueous solution. Based on the surface morphology of the corroded surface, it was found that the corrosion mechanisms of Zr-based metallic glass thin films included pitting, crevice and filiform corrosions. After the cyclic voltammetry tests, the dendritic Cu crystallites, cuprous oxide and cuprous chloride particles mixture were found on the surface of Zr-based TFMG.

中文摘要 i
英文摘要 ii
致謝 iii
目錄 vi
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2實驗目的 2
第二章 文獻回顧 4
2.1非晶質合金發展回顧 4
2.2非晶質合金形成能力 8
2.2.1簡化玻璃轉換溫度(Tγg) 9
2.2.2 過冷液相區寬度(∆Tx) 9
2.2.3 γ參數 10
2.2.4 Inoue教授的三種經驗法則 10
2.3 非晶質合金特性 12
2.3.1機械性質 12
2.3.2抗蝕性 12
2.4 非晶質合金薄膜 13
2.4.1 非晶質薄膜介紹 13
2.4.2 鋯基非晶薄膜 15
2.5腐蝕介紹 23
2.5.1 電化腐蝕原理 23
2.5.2伽凡尼腐蝕 24
2.5.3腐蝕型態 25
2.5.4 非晶質合金腐蝕 28
2.6 磁控濺鍍法原理 34
2.6.1 直流式(DC)磁控濺鍍系統 35
2.6.2 射頻式(RF)磁控濺鍍系統 35
2.6.3 脈衝磁控濺鍍法 36
第三章 實驗流程與方法 38
3.1 實驗流程 38
3.2實驗步驟與方法 42
3.2.1試片規格及靶材製備流程 42
3.2.2濺鍍實驗設備 43
3.2.3鍍膜製程 44
3.3 鍍膜性質分析 46
3.3.1 成份分析實驗 46
3.3.2 表面與橫截面分析試驗 46
3.3.3 X光繞射分析試驗 46
3.3.4 硬度試驗 47
3.3.5 動電位腐蝕分析 48
3.3.6 循環電位腐蝕分析 49
第四章 實驗結果與討論 51
4.1晶相、微結構分析與機械性質 51
4.1.1 成份分析 51
4.1.2 晶相分析 (X-ray) 53
4.1.3 微結構分析 53
4.1.4 硬度分析 59
4.2電化學原子力顯微鏡分析 60
4.2.1 電位與電流變化分析與即時AFM影像觀察 60
4.2.2 腐蝕後之試片表面形貌觀察 67
4.2.3 腐蝕表面成份分析 75
4.3 於1mM HCl 水溶液之電化學腐蝕試驗 81
4.3.1 電流電位圖 81
4.3.2 腐蝕表面形貌觀察 83
4.3.3 腐蝕表面成份分析 94
4.4. 於1mM H2SO4水溶液電化學腐蝕試驗分析 103
4.4.1 電流電位圖 103
4.4.2 腐蝕表面形貌觀察 105
4.4.3 腐蝕表面成份分析 112
4.5 腐蝕機制與生成物討論 125
4.5.1鋯基金屬玻璃之腐蝕機制 125
4.5.2鋯基金屬玻璃之腐蝕生成物探討 130
第五章 結論 134
參考文獻 136
1.A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta Materialia, 48, pp.279, 2000.
2.L. Q. Xing, D. M. Herlach, M. Cornet, J. P. Dallas, M. F. Trichet and J. P. Chevalier, “Piezomagnetic and magnetostrictive properties and structure of Fe-Cu-Nb-Ta-Si-B alloys annealed in vacuum”, Materials Science and Engineering, A226-228, pp.874, 1997.
3.S. Pang, T. Zhang, K. Asami and A. Inoue, “Formation of bulk glassy Ni-(Co-) Nb-Ti-Zr alloys with high corrosion resistance”, Materials Transactions, JIM, 43, pp1771-1773, 2002.
4.H. Katagiri, S. Meguro, M. Yamasaki, H. Habazaki, T. Sato, A. Kawashima, K. Asami and K. Hashimoto,” An attempt at preparation of corrosion-resistant bulk amorphous Ni-Cr-Ta-Mo-PB alloys”, Corrosion Science, 43, pp.183-191, 2001.
5.W. L. Johnson, “Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Materials Science Forum, 225-227, p.35-50, 1996.
6.A. Inoue, M. Koshiba, T. Zhang and T. Masumoto, “Wide supercooled liquid region and soft magnetic properties of Fe56-Co7Ni7Zr0-10 Nb-(or Ta)0-10B20 amorphous alloy”, Japanese Journal of Applied Physics, 83, pp.1967-1972, 1998.
7.Y. Hara, T. Ando, R. C. O, Handley and N. J. Grant, “Fine‐particle magnetism in the devitrified metallic glass Fe43Cr25Ni29B12”, Japanese Journal of Applied Physics, 62, pp.1948-1951, 1987.
8.K. Asami, C.-L. Qin, T. Zhang, A. Inoue, "Effect of additional elements on the corrosion behavior of a Cu–Zr–Ti bulk metallic glass", Materials Science and Engineering A, 375–377, pp.235–239, 2004.
9.A. Inoue, M. Koshiba, T. Itoi and A. Makino, “Ferromagnetic Co-Fe-Zr-B amorphous alloys with glass transition and good high frequency permability”, Applied Physics Letters, 73, pp.744-746, 1998.
10.A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties, Materials Science & Engineering A, 226-228, pp.357-363, 1997.
11.惠希東 陳國良, “塊體非晶合金”, 化學工業出版社, pp.1, 2007.
12.W. Klement, R.H. Wilens, P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature, 187, pp.869-870, 1960.
13.H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, 41, pp.1237-1238, 1970.
14.H. Liebermann, C. Jr. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, Magnetics, IEEE Transactions on magnetics, 12, p.921-923, 1976.
15.吳學陞, “新興材料-塊狀非晶質金屬材料”, 工業材料, 149, pp.154-159, 1999.
16.A. Inoue, T. Zhang, T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region”, Materials Transactions, JIM, 30, pp.965-972, 1989.
17.A. Inoue, ”High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates”, Materials Transactions, JIM, 36, pp.866-875, 1995.
18.A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Structure Produced by a High-Pressure Die Casting Method”, Materials Transactions, JIM, 33, pp.937-945, 1992..
19.A. Peker, and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, 63, pp.2342-2344, 1993.
20.潘岱進, 「藉由in-situ 析出富Ta 相對鋯基金屬玻璃複合材機械性質及熱性質」, 義守大學, 碩士論文,民國九十八年。
21.D. Turnbull, “Under what conditions can a glass be formed”, Contemporary Physics, 10, pp.473-488, 1969.
22.T. A. Waniuk, J. Schroers and W. L. Johnson, “Critical cooling rate thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Applied Physics Letters, 78, pp.1213-1215, 2001.
23.Z.P. Lu, Y. Li, S.C. Ng, “Reduced glass transition temperature and glass forming ability of bulk glass forming alloys”, Journal of Non-Crystalline Solids, 270, pp.103-114, 2002.
24.Z.P. Lu, C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, 50, pp.3501-3512, 2002.
25.A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and Nonferous Bulk Amorphous Alloys”, Materials Science Forum, 269-272, pp.855, 1998.
26.A. Inoue, A. Takeuchi and T. Zhang, “Ferrmagnetic bulk amorphous alloys”, Metallurgical Materialia Transactions, 29, pp1779-1793, 1998.
27.M. Heilmaier, “Deformation behavior of Zr-based metallic glasses”, Materials Processing Technology., vol.117, 2001, pp.374-380.
28.A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, “Effect of Cu or Ag on the Formation of Coexistent Nanoscale Al Particles in Al-Ni-M-Ce(M=Cu or Ag) Amorphous Alloys”, Materials Transactions, JIM, vol.35, pp.95-102, 1994.
29.J. P. Chu, “Annealing-Induced Amorphization in a Glass-Forming Thin Film”, Journal of the Minerals, Metals And Materials Society, JOM, 61, pp.72-75, 2009.
30.M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee,T.G. Nieh, “A nanoscaled underlayer confinement approach for achieving extraordinarily plastic amorphous thin film”, Scripting Master, 61, pp.840-843, 2009.
31.J.P. Chu, J. C. Huand, J. S. C. Jang, Y. C. Wang, P. K. Liaw, “Thin Film Metallic Glasses: Preparations, Properties, and Applications”, JOM, 62, pp.1924, 2010.
32.K. J. Huang, C. S. Xie, T.M. Yue, “Microstructure of Cu-based Amorphous Composite Coatings on AZ91D Magnesium Alloy by Laser Cladding”, Journal of Materials Sciences and Technology, 25, pp492-498, 2009.
33.K. J. Huang, Li yan, C. S. Wang, C. S. Xie, C. R. Zhou, “Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy”, Trans. Nonferrous Met. Soc. China 20, pp.1351−1355, 2010
34.S. Ningshen, U. Kamachi Mudali, R. Krishnan, Baldev Raj, “Corrosion behavior of Zr-based metallic glass coating on type 304L stainless steel by pulsed laser deposition method”, Surface & Coatings Technology, 205, pp.3961–3966, 2011
35.C.L. Chiang, J.P. Chu, F. X. Liu, P. K. Liaw, and R. A. Buchanan, “A 200 nm thick glass-forming metallic film for fatigue-property enhancements”, Applied Physics Letters, 88, pp.131902, 2006.
36.S. Hata, K. Sato, A. Shimokohbe, “Fabrication of Thin Film Metallic Glass and its Application to Microactuator”, Device and Process Technologies for MEMS and Microelectronics; Kevin H. Chau and Sima Dimitrijev, Eds., Proceedings of SPIE, 3892, pp.97-108, 1999.
37.H. W. Jeong, S. Hata, and A. Shimokohbe, “Micro-forming of thin film metallic glass by local laser heating” The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, pp.372 - 375 2002.
38.H. W. Jeong, S. Hata, and A. Shimokohbe, “Microforming of three-dimensional microstructures from thin-film metallic glass”, Journal of Microelectromechanical Systems, 12, pp.42 - 52, 2003
39.J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O'Keefe, B. Johnson, and C. H. Kuo, “Annealing-induced full amorphization in a multicomponent metallic film”, Physical Review B, 69, pp.113410, 2004.
40.Y. Matsumoto, M. Hiraoka, “In situ analysis of the thermal behavior in the Zr-based multi-component metallic thin film by pulsed laser deposition combined with UHV-laser microscope system”, Materials Science and Engineering B,148, pp.179-182, 2008.
41.A. Kobayashi, T. Kuroda, H. Kimura, A. Inoue, “Effect of spraying condition on property of Zr-based metallic glass coating by gas tunnel type plasma spraying” Materials Science and Engineering B,173, pp.122–125, 2010.
42.S.Y. Kuan, H.S. Chou, M.C. Liu, X.H. Du, J.C. Huang, “Micromechanical response for the amorphous/amorphous nanolaminates”, Intermetallics, 18, pp.2453-2457, 2010.
43.F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, P.K. Liaw, “Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film”, Surface & Coatings Technology 203, pp.3480–3484, 2009
44.F.X. Liu, C.L. Chiang, J.P. Chu, Y.F. Gao, and P.K. Liaw, “Effects of Glass-Forming Metallic Film on the Fatigue Behavior of C-2000 Ni-Based Alloy”, Materials Research Society Symposium Proceedings, 903E, pp. 0903-Z14-13, 2006.
45.F.X. Liu , P.K. Liaw, W.H. Jiang, C.L. Chiang, “Fatigue-resistance enhancements by glass-forming metallic films”, Materials Science and Engineering A, 468–470, pp.246–252, 2007.
46.P.T. Chiang, G.J. Chen.1, S.R. Jian, Y.H. Shih, S.C. Jang, C.H. Lai, “Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans”, Fooyin Journal of Health Sciences, 2, pp.12-20, 2010.
47.J. Paillier, C. Mickel, P. F. Gostin, A. Gebert,”Characterization of corrosion phenomena of Zr–Ti–Cu–Al–Ni metallic glass by SEM and TEM”, Materials Characterization, 61, pp1000-1008, 2010.
48.M. Hemmati Pourgashti , E. Marzbanrad, E. Ahmadi, “Corrosion behavior of Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass in various aqueous solutions”, Materials and Design, 31, pp.2676–2679, 2010
49.C.L. Qiu, L. Liu, M. Sun, S.M. Zhang, J. Biomed, “The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid”, Journal of Biomedical Materials Research Part A, 75A, pp.950–956, 2005.
50.L. Liu, C.L. Qiu, Q. Chen, S.M. Zhang, “Corrosion behavior of Zr-based bulk metallic glasses in different artificial body fluids”, Journal of Alloys and Compounds, 425, pp. 268–273, 2006.
51.A. Gebert, K. Mummert, J. Eckert, L. Schultz, A. Inoue, “Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy”, Materials and Corrosion, 48, pp.293-297, 1997.
52.A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert and L. Schultz “Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses”, Materials Science and Engineering, A267, pp.294-300, 1999.
53.X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang , W. Wang, “Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses”, Biomaterials, 31,pp.1093–1103, 2010.
54.A. Gebert, V. Haehnel, E.S. Park, D.H. Kim, L. Schultz, “Corrosion behaviour of Mg65Cu7.5Ni7.5Ag5Zn5Gd5Y5 bulk metallic glass in aqueous environments” , Electrochimica Acta , 53, pp.3403–3411, 2008.
55.C.W. Chu, Jason S.C. Jang , S.M. Chiu, J.P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films 517. pp.4930–4933, 2010.
56.TriboScope User Manual, Hysitron Inc, 2002.
57.何恕德,「以導電性原子顯微鏡研究矽在奈米壓痕下之相變化行為」,國立清華大學碩士論文,民國九十二年。
58.D. Wang, M. Mo, D. Yu, L. Xu, F. Li, and Y. Qian, "Large-Scale Growth and Shape Evolution of Cu2O Cubes", Crystal Growth & Design, 3, pp.717-720, 2003
59.S. Sun, F.Zhou, L. Wang, X. Song, and Z. Yang, "Template-Free Synthesis of Well-Defined Truncated Edge Polyhedral Cu2O Architectures", Crystal Growth & Design, 10, 541–547, 2010
60.O. Devos, C. Gabrielli, L. Beitone, C. Mace, E. Ostermann, H. Perrot, "Growth of electrolytic copper dendrites. I: Current transients and optical observation", Journal of Electroanalytical Chemistry, 606, pp.75–84, 2007.
61.P. J. Kelly, R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, 56, pp.159-172, 2000.
62.楊明輝,「脈衝磁控濺鍍技術介紹」,工業材料雜誌,第兩百三十二期,91 頁,民國, 105, 九十五年四月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top