跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱郁菁
研究生(外文):Yuh-Jing Chiou
論文名稱:承載於金屬氧化物修飾之多壁奈米碳管之鈀與金觸媒應用於電催化反應之研究
論文名稱(外文):Electrocatalysis Applications of Palladium and Gold Catalysts Supported on Metal Oxide Modified Multi-Walled Carbon Nanotubes
指導教授:林鴻明林鴻明引用關係
指導教授(外文):Hong-Ming Lin
學位類別:博士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:108
中文關鍵詞:燃料電池觸媒奈米碳管
外文關鍵詞:CNTFuel cellPdCatalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
對於應用於直接甲酸燃料電池而言,適當修飾的鈀觸媒被認為具有優異的電催化特性而引起廣泛的研究興趣。為改善催化效能及避免觸媒毒化問題,本研究利用含浸法與多元醇法合成具固溶相雙金屬的金-鈀觸媒,並承載於氧化鈰或氧化鈰鋯修飾過的奈米碳管載體。研究中以ICP、XRD、及TEM檢測產物的組成、結構與表面形貌。這些基本檢測皆證實與原實驗設計有良好一致性。
對於氧化鈰或氧化鈰鋯修飾過的奈米碳管載體,由於氧化鈰或氧化鈰鋯具中度多孔結構,同時可能由於含浸過程中再度將奈米碳管破碎化,修飾過的奈米碳管比起未修飾過的奈米碳管有較大的比表面積。金屬鋯的添加會降低氧化物中晶格氧的脫附溫度。而金屬承載於載體之後,載體的比表面積減少。鈀金屬為催化TPD脫附反應的主因。
在電催化特性實驗中,實驗結果顯示:具固溶相雙金屬的金-鈀觸媒能避免鈀金屬在電催化反應中溶出,而氧化物修飾過的奈米碳管載體,則可避免觸媒被毒化的問題。所有的觸媒皆能在150~250oC將CO完全氧化,較高的鈀含量觸媒其CO 100%轉化溫度較低。本研究認為形成金-鈀固溶相與氧化物修飾的奈米碳管載體能降低反應活化能而有較好的催化特性。
For the application of direct formic acid fuel cell, Pd catalyst with some modification attracts the study attention for its electrocatalytic advantages. To benefit the catalytic performance and prevent the catalyst poison problem, this study develops Pd basis catalysts, which have solid solution phase with Au and ceria/ceria-zirconia modified MWCNTs substrate, by impregnation and polyol methods. The composition, structure and morphology are analyzed by ICP, XRD and FETEM, respectively. For Au-Pd bimetal catalysts, the formation of solid solution phase and the compositions of the catalysts are proved to be consistent with the initial designation.
For MWCNTs modified by ceria or ceria-zirconia, both mesoporous structure of ceria/ceria-zirconia and the advanced breaking of MWCNTs in the impregnation process may cause the surface area increasing of MWCNTs. Zr doping may decrease the temperature of lattice oxygen desorption. The addition of metal can fill the defect of the substrate and decrease the surface area. Pd is the main dominant to promote the reaction and lower the reaction temperature in the TPD helium process.
In electrocatalysis, Au-Pd solid solution can prevent the leaching of Pd in formic acid, while the oxide modified support can prevent catalyst poison. The prepared catalysts can totally convert CO between 150~250oC. More Pd can convert 100% CO at lower temperature. It can be considered that, both the formation of solid solution, Au-Pd, and the oxide modification of MWCNTs can decrease the activation energy of the catalyzing reaction and have better catalytic performance.
ABSTRACT I
摘要 III
ACKNOWLEDGEMENT IV
TABLE OF CONTENTS V
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 4
2.1 DFAFC chemistry 4
2.2 Catalyst history in DFAFCs 8
2.3 Introduction of Palladium basis catalyst 11
2.4 Introduction of Carbon Nanotubes 19
2.5 Electrocatalyst with metal oxide coated supporter 25
2.6 Synthesis Technology 29
CHAPTER 3 EXPERIMENTAL 35
3.1 Materials 35
3.2 Sample Preparation 37
3.3 Specimen Analysis 47
CHAPTER 4 RESULTS AND DISCUSSION 52
4.1 XRD Patterns 52
4.2 ICP 64
4.3 Morphology 66
4.4 BET surface area 74
4.5 TPD-He 76
4.6 Cyclic Voltammetry Analysis 81
4.7 CO Oxidation 87
CHAPTER 5 CONCLUSIONS 89
REFERENCES 91
1.Aicheng Chen and Peter Holt-Hindle, Chem. Rev. 110 (2010) 3767.
2.Ping Hong, Shijun Liao, Jianhuang Zeng, Xinjian Huang, J. Power Sources 195 (2010) 7332.
3.J. H. Kim, J. Y. Lee, K. H. Choi, H. Chang, J. Power Sources 185 (2008) 881.
4.G. Hoogers, Fuel Cell Technology Handbook, CRC Press LLC, Florida, 2002.
5.D. J. Butler, Fuel cell today portable fuel cell survey, 2009.
6.Xingwen Yu, Peter G. Pickup, J. Power Sources 182 (2008) 124.
7.W. Vielstich, H.A. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells, Wiley, New York, 2003.
8.L. Carrette, K.A. Friedrich, U. Stimming, Chemphyschem. 1 (2000) 162.
9.A. S. Arico, S. Srinivasan, V. Antonucci, Fuel Cells 1 (2001) 133.
10.G. J. K. Acres, J. Power Sources 100 (2001) 60.
11.C. Stone, A.E. Morrison, Solid State Ionics 151 (2003) 1.
12.M. Winter, R.J. Brodd, Chem. Rev. 104 (2004) 4245.
13.C. C. Chan, Proc. IEEE 95 (2007) 704.
14.R. von Helmolt, U. Eberle, J. Power Sources 165 (2007) 833.
15.U.B. Demirci, J. Power Sources 169 (2007) 239.
16.S. Ha, R. Larsen, Y. Zhu, R. I. Masel, Fuel Cells 4 (2004) 337.
17.Y. W. Rhee, S.Y. Ha, R. I. Masel, J. Power Sources 117 (2003) 35.
18.X. Wang, J. M. Hu, I. M. Hsing, J. Electroanal. Chem. 562 (2004) 73.
19.A. Capon, R. Parsons, J. Electroanal. Chem. 44 (1973) 239.
20.M. Baldauf, D. M. Kolb, J. Phys. Chem. 100 (1996) 11375.
21.M. Tian, B. E. Conway, J. Electroanal. Chem. 581 (2005) 176.
22.N. Hoshi, K. Kida, M.Nakamura, M.Nakada, K. Osada, J. Phys. Chem. B 110 (2006) 12480.
23.W. P. Zhou, A. Lewera, R. Larsen, R.I. Masel, P.S. Bagus, A. Wieckowski, J. Phys. Chem. B 110 (2006) 13393.
24.S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Fuel Cells 4 (2004) 337.
25.Cheng Han Chen;Yuh-Jing Chiou;Wei Jen Liou;Wei Syuan Lin;Hong-Ming Lin, She Huang Wu;Andrzej Borodziński;Piotr Kedzierzawski;Leszek Stobinski;Shu Hua Chien, Functional Materials Letters (accepted).
26.Yuh-Jing Chiou, Hang-Jui Hsu, Hong-Ming Lin, Wei-Jen Liou, Huey-Wen Liou, She-Huang Wu, Shu-Hua Chien , Particuology (accepted).
27.Yuh-Jing Chiou, Kuan-Yuan Chen, Hong-Ming Lin, Wei-Jen Liou, Huey-Wen Liou, She-Huang Wu, Anna Mikolajczuk, Marta Mazurkiewicz, Artur Malolepszy, Leszek Stobinski, Andrzej Borodzinski, Piotr Kedzierzawski, Krzysztof Kurzydlowski, Shu-Hua Chien, and Wen-Chang Chen, Phys. Status Solidi A, 208 (2011) 1778.
28.http://en.fcc.gov.ir/Formicacidfuelcell.aspx
29.http://www.tekion.com
30.S. Q. Song, V. Maragou, P. Tsiakaras, J. Fuel Cell Sci. Technol. 4 (2007) 203.
31.V. Neburchilov, J. Martin, H.J.Wang, J.J. Zhang, J. Power Sources 169 (2007) 221.
32.S. Ha, B. Adams, R.I. Masel, J. Power Sources 128 (2004) 119.
33.S. Ha, Z. Dunbar, R.I. Masel, J. Power Sources 158 (2006) 129.
34.Mikhail Drobizhev, Yuriy Stepanenko, Aleksander Rebane, Craig J. Wilson, Thomas E. O. Screen, and Harry L. Anderson, J. Phys. Chem B, 110 (2006) 15353.
35.C. Lamy, S Rousseau, E. M. Belgsir, C. Coutanceau and J.-M Leger, Electrochim. Acta 49 (2004) 3901.
36.Robert Larsen, Su Ha, Joseph Zakzeski and Richard I. Masel, J. Power Sources 157 (2006) 78.
37.Jung-Han Yu, Hoo-Gon Choi and Sung M. Cho, Electrochem. Comm. 7 (2005) 1385.
38.G. Apanel, Fuel Cells Bull. (2004) 12.
39.Umit B. Demirci, J. Power Sources 173 (2007) 11.
40.A. V. Tripkovi’c, K.Dj. Popovi’c, R.M. Stevanovi’c, R. Socha, A. Kowal, Electrochem. Commun. 8 (2006) 1492.
41.L. L. Zhang, T.H. Lu, J.C. Bao, Y.W. Tang, C. Li, Electrochem. Commun. 8 (2006) 1625.
42.X. G. Li, I.M. Hsing, Electrochim. Acta 51 (2006) 3477.
43.Y. Y. Mu, H.P. Liang, J.S. Hu, L. Jiang, L.J. Wan, J. Phys. Chem. B 109 (2005) 22212.
44.G. Wu, Y. S. Chen, B. Q. Xu, Electrochem. Commun. 7 (2005) 1237.
45.M. Weber, J. T. Wang, S. Wasmus, R. F. Savinell, J. Electrochem. Soc. 143 (1996) L158.
46.C. Rice, S. Ha, R. I. Masel, A. Wieckowski, J. Power Sources 115 (2003) 229.
47.J. H. Choi, K.J. Jeong, Y. Dong, J. Han, T. H. Lim, J.S. Lee, Y.E. Sung, J. Power Sources 163 (2006) 71.
48.X. C. Zhou, W. Xing, C. P. Liu, T. H. Lu, Electrochem. Commun. 9 (2007) 1469.
49.S. Y. Uhm, S. T. Chung, J. Y. Lee, Electrochem. Commun. 9 (2007) 2027.
50.P. Waszczuk, T. M. Barnard, C. Rice, R. I. Masel, A. Wieckowski, Electrochem. Commun. 4 (2002) 599.
51.E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, H. D. Abruna, J. Am. Chem. Soc. 126 (2004) 4043.
52.M. Arenz, V. Stamenkovic, T. J. Schmidt, K. Wandelt, P.N. Ross, N.M. Markovic, Phys. Chem. Chem. Phys. 5 (2003) 4242.
53.M. Arenz, V. Stamenkovic, P. N. Ross, N.M. Markovic, Surf. Sci. 573 (2004) 57.
54.Y. M. Zhu, Z. Khan, R. I. Masel, J. Power Sources 139 (2005) 15.
55.S. Ha, R. Larsen, R. I. Masel, J. Power Sources 144 (2005) 28.
56.Z. L. Liu, L. Hong, M. P. Tham, T. H. Lim, H. X. Jiang, J. Power Sources 161 (2006) 831.
57.L. L. Zhang, T. H. Lu, J.C. Bao, Y. W. Tang, C. Li, Electrochem. Commun. 8 (2006) 1625.
58.L. L. Zhang, Y. W. Tang, J.C. Bao, T. H. Lu, C. Li, J. Power Sources 162 (2006) 177.
59.R. Larsen, S. Ha, J. Zakzeski, R. I. Masel, J. Power Sources 157 (2006) 78.
60.X. G. Li, I. M. Hsing, Electrochim. Acta 51 (2006) 3477.
61.http://periodic.lanl.gov/elements/46.html.
62.T. Ishihara, K. Harada, K. Eguchi, H. Arai, J. Catal. 136 (1992) 161.
63.A. Y. Stakheev, L. M. Kustov, Appl. Catal. A 188 (1999) 3.
64.John R. Anderson and Michel Boudart, Catalysis Science and Technology, vol. 2, Berlin Heidelberg New York (1981).
65.Weijiang Zhou and Jim Yang Lee, J. Phys. Chem. C 2008, 112, 3789.
66.Sudong Yang, Xiaogang Zhang, Hongyu Mi, Xiangguo Ye, J. Power Sources 175 (2008) 26.
67.Jiajun Wang, Geping Yin, Yougui Chen, Ruying Li, Xueliang Sun, International journal of hydrogen energy 34 (2009) 8270.
68.Garry Glaspell, Hassan M. A. Hassan, Ahmed Elzatahry, Victor Abdalsayed, M. Samy El-Shall, Top Catal 47 (2008) 22.
69.Olumide Winjobi, Zhiyong Zhang, Changhai Liang, Wenzhen Li, Electrochimica Acta 55 (2010) 4217.
70.Wang, X.; Li, Q.; Xie, J.; Jin, Z.; Wang, J.; Li, Y.; Jiang, K.; Fan, S. (2009) 3137.
71.http://www.sciencedaily.com/releases/2007/07/070719011151.htm
72.Signorelli, R., Ku, D. C., Kassakian, J. G., Schindall, J. E., Proceedings of the IEEE (2009) 97, 11, 1837.
73.Simmons, Trevor; Hashim, D; Vajtai, R; Ajayan, PM (2007)10088.
74.New Scientists News, 31 October 2008.
75.Yildirim, T.; Gulseren, O.; Kılıc, C.; Ciraci, S. (2000) 19.
76.Nanotube Catalysts, 9 February 2009, 7.
77.W. J. Liou, The Gas Sensing Properties of Nanocrystalline TiO2-based Hybrid Systems, Ph. D. Thesis of Tatung University (2007).
78.Hideo Sobukawa, R&D Review of Toyota CRDL Vol. 37 No. 4 1-5
79.Sania M. de Lima, Ivna O. da Cruz, Gary Jacobs, Burtron H. Davis, Lisiane V. Mattos, Fabio B. Noronha, Journal of Catalysis 257 (2008) 356.
80.Lijun Yang, Huaneng Su, Ting Shu, Shijun Liao, Electrochimica Acta (submitted).
81.A. O. Neto, L. A. Farias, R. R. Dias, M. Brandalise, M. Linardi, E. V. Spinace, Electrochemistry Communication 10 (2008) 1315.
82.C. W. Liu, Y. C. Wei, K. W. Wang, Electrochemistry Communication 11 (2009) 1362.
83.J. Zhao, W. Chen, Y. Zheng, Materials Chemistry and Physics 113 (2009) 591.
84.Y. Wang, S. Wang, X. Wang, Electrochemical and Solid-State Letters 12 (2009) B73.
85.M. Figlarz, F. Fievet and J.P. Lagier, French patent no. 8221483: Europe no. 0113281: USA no. 4539041: Finland no. 74416, Japan: application no. 24303783.
86.L. K. Kurihara, G. M. Chow and P. E. Schoen, Nanostructured materials, vol 5, No 6, (1995) 607.
87.F. Bonet, V. Delmas, S. Grugeons, R. H. Urbina, P. Y. Silvert, and K. Tekaia-Elhsissen, Nanostructured Mater., 11, (1999) 1277.
88.Sania M. de Lima, Ivna O. da Cruz, Gary Jacobs, Burtron H. Davis, Lisiane V. Mattos and Fabio B. Noronha, Journal of Catalysis 257 (2008) 356.
89.P. P. Silva, F. A. Silva, L. S. Portela, L.V. Mattos, F. B. Noronha, and C. E. Hori, Catalysis Today 107–108 (2005) 734.
90.Min Hye Youn, Jeong Gil Seo, Kyung Min Cho, Sunyoung Park, Dong Ryul Park, Ji Chul Jung and In Kyu Song, International Journal of Hydrogen Energy 33 (2008) 5052.
91.Prakash Biswas and Deepak Kunzru, Chemical Engineering Journal 136 (2008) 41.
92.Jilei YE, Yang WANG and Yuan Liu, Journal of Rare Earths, 26 (2008) 831.
93.Sorapong Pavasupree, Yoshikazu Suzuki, Sommai Pivsa-Art and Susumu Yoshikawa, Ceramics International 31 (2005) 959.
94.Min Hye Youn, Jeong Gil Seo, Sunyoung Park, Ji Chul Jung, Dong Ryul Park and In Kyu Song, International Journal of Hydrogen Energy 33 (2008) 7457.
95.Sylvie Rossignol, Francois Gerard and Daniel Duprez, J. Mater. Chem., 1999, 9, 1615.
96.Jan Kaspar and Paolo Fornasiero, Journal of Solid State Chemistry, 171 (2003) 19.
97.B. Azambre, L. Zenboury, A. Koch, and J. V. Weber, J. Phys. Chem. C 113 (2009) 13287.
98.Harold N. Evin, Gary Jacobs, Javier Ruiz-Martinez, Uschi M. Graham, Alan Dozier, Gerald Thomas and Burtron H. Davis, Catal Lett 122 (2008) 9.
99.Shankhamala Kundu, Yuemin Wang, Wei Xia, and Martin Muhler, J. Phys. Chem. C, 112 (2008) 16869.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊