跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏瑋
研究生(外文):Po-Wei Huang
論文名稱:電漿處理對熱塑性聚胺基甲酸乙酯/癸二酸改質澱粉摻合物影響之研究
論文名稱(外文):Effects of Plasma Treatment on the Properties of Thermoplastic polyester-urethane/Sebacic Acid Modified Tapioca Starch Blends
指導教授:黃繼遠
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:99
中文關鍵詞:熱塑性聚胺基甲酸乙酯癸二酸熱塑性澱粉應變
外文關鍵詞:Thermoplastic polyurethane (TPU)Sebacic acid (SA)Thermoplastic starch (TPS)Tensile.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是將熱塑性聚胺基甲酸乙酯(TPU)與癸二酸(SA)改質樹薯澱粉、甘油混煉製備而成之新摻合物,研究探討經電漿處理TPU與SA改質樹薯澱粉製備之材料其機械性質(拉伸測試)、(耐水性測試),熱分析,脆斷後經由電子顯微鏡觀察表面形貌及生物分解性測試之特性。本研究分成兩部分:
第一部分為樹薯澱粉經癸二酸改質後(SATPS),與不同量TPU經由單螺桿擠壓出製備之材料(SATPU)。本製程之加工溫度可有效提升材料之初始應力。拉伸測試結果顯示,材料的最大伸長量由未改質澱粉與150gTPU混煉(STTPU150)的300%增加至SA改質澱粉與150gTPU混煉(SATPU150)的520%。隨著TPU添加量增加SATPS的最大伸長量由50%增加至SATPU150的520%。電子顯微鏡觀察出當材料中TPU量越多時,澱粉與TPU之間的界面也越明顯。材料隨TPU的量增加,耐水性提升,但生物分解速率卻越低。由熱分析得知,樹薯澱粉經由癸二酸改質或添加TPU混煉後,熱穩定性皆有提升。
第二部分為將100g 的TPU經由不同電漿參數處理 (20w, 40w, 60w/1min, 3min, 5min) 後,與SA改質後澱粉經由單螺桿擠出製備。電漿參數 20w 1min 可有效改善澱粉與TPU之間的界面問題。拉伸測試得知無電漿處理的伸長量為240%,電漿20w 1min處理後材料伸長量增加為300%。由SEM圖可觀察出有電漿處理所呈現出來的界面紋路明顯的比無電漿處理還要來的淺,代表電漿處理可改善澱粉與TPU的界面問題,以致提升材料之應變。
In this study, thermoplastic polyurethane (TPU) was blended with Sebacic acid (SA) modified tapioca starch/glycerol (SATPS) to prepare a new composite material (SATPU). The mechanical properties, physical properties, and thermal properties of TPU after plasma treatment and Sebacic acid modified starch blends were observed through a tensil test, water absorption test, and thermogravimetric analysis, respectively. The correlation between the surface structure of sample and material properties, as well as the biodegradability of composts were observed through use of the scanning electronic microscope (SEM). This investigation was divided into two parts.
In section 1, SA (2g) modified tapioca starch and was prepared with different weights of TPU (0g, 50g, 100g, 150g) by a single-screw extruder. The single-screw extruder’s elevated processing temperatures can improve the initial modulus of the materials. The stress-strain test showed that elongation at the break of STTPU150 & SATPU150 increased from 300% to 520%. By adding more TPU, elongation at the break of SATPS & SATPU150 increased from 50% to 520%. The SEM morphology found that the interface became more fractured with increased proportion of TPU particles. The more TPU, the more water absorption decreases. However, the less biodegradeable the sample becomes. In TGA analysis, the thermal stability of SATPU blends is much better than STTPU blends throughout the relevant temperature range.
In section 2, in light of material costs we used 100g TPU particles in the plasma treatment. The SA modified starch / plasma treatment (20w, 40w, 60w/1min, 3min, 5min) TPU was compounded by single-screw extruder. Plasma treatment of 20w-1min TPU improved the surface between TPU/SATPS. Elongation at the break of 20w-1min increased from 240% to 320%. SEM morphology observed that the 20w-1min interface fractures were greatly improved. The optimal plasma parameter of the blend (Starch/glycerol/TPU, 250/75/100g) having outstanding mechanical properties is 20watt 1min.
ACKOWLEDGMENTS I
CHINESE ABSTRACT II
ENGLISH ABSTRACT III
LIST OF FIGURES X
LIST OF TABLES XIV
CHAPTER I INTRODUCTION 1
CHAPTER II THEORIES AND LITERATURES REVIEW 2
2.1 Biodegradable plastic 2
2.2 Biodegradable polymer 2
2.2.1 The definition of biodegradable polymer 2
2.2.2 Regulations of biodegradable polymer 3
2.2.3 Aliphatic polyesters 5
2.3 Starch 6
2.3.1 Classification 6
2.3.2 Native starch granules and crystalline structure 7
2.3.3 Gelatinization 8
2.3.4 Granular swelling 8
2.3.5 Modified starch 9
2.3.6 Thermoplastic starch (TPS) 9
2.3.7 Identification of TPS crystallinity 10
2.4 Thermoplastic polyurethane (TPU) 11
2.5 Sebacic acid 12
2.6 Polymer blends 12
2.7 Determining Aerobic Biodegradation of Plastic Materials under Controlled Composting Conditions 12
2.8 Soil Compost 13
2.9 Environmental Chamber 14
CHAPTER III EXPERIMENT 25
3.1 Materials 25
3.1.1 Polymer 25
3.1.2 Chemicals and Additives 25
3.2 Instruments 26
3.3 Experimental Procedure 26
3.3.1 Blending 26
3.3.2 Argon Plasma Treatment 27
3.3.3 Tensile test 27
3.3.4 Water Absorption of Plastics 27
3.3.5 Scanning Electron Microscope (SEM) Imaging 28
3.3.6 Thermogravimetric measurements 28
3.3.7 Soil test 29
CHAPTER IV RESULTS AND DISCUSSION 37
Section 1 Effect of Thermoplastic Starch and Sebacic Acid modification Starch / Acrylicacid Thermoplastic Polyester-urethane (TPU) Blends 37
4.1 Mechanical properties measurement 38
4.2 Water absorption test 40
4.3 Thermogravimetric analysis (TGA) 42
4.4 SEM Morphology of extruded STTPU & SATPU blends 44
4.5 SEM Morphology after Soil Burial test and Weight Loss from two to twelve weeks of STTPUs & SATPUs 46
Section 2 Effect of Plasma Treatment on the Properties of Thermoplastic polyester-urethane/Sebacic Acid modified Starch Composites 54
5.1 Mechanical properties measurement.55
5.2 SEM morphology of plasma treatment TPU/SATPS composites 60
5.3 Thermogravimetric analysis (TGA) 63
5.4 SEM Morphology after Soil Burial test and Weight Loss from two to twelve weeks of plasma treatment SATPU100 65
CHAPTER V CONCLUSIONS 73
REFERENCES 74
1.Griffin, G.J.L. Pure Appl Chem 52 (1980) 399.
2.Huang, C.Y., Roan M.L., Kuo M.C., Lu W.L. Polym Degrad Stab 90 (2005) 95.
3.Arvanitoyannis, I., Biliaderis, C.G., Ogawa, H., Kawasaki N. Carbohydr. Polym 36 (1998) 89.
4.YU, L.; Christie, G. J. Mater. Sci. 40 (2005) 111.
5.Kampeerapappun, P. P.; Duangdao, A. O.; Duanghathai, P. K.; Srikulkit, K. Carbohydr. Polym. 67 (2007) 155.
6.Park, H. M.; Lee, W. K.; Park, C. Y.; Cho, W. J.; Ha, C. S. J. Mater. Sci. 38 (2003) 909.
7.IDES. The Plastics Web. Thermoplastic Polyurethane (TPU) (2011).
8.YU, L.; Christie, G. J. Mater. Sci. 40 (2005) 111.
9.Mohanty, A. K.; Misra, M.; Hinrichsen, G. Macromol. Mater. Eng. Part C 276/277 (2000) 1.
10.Nair, L. S.; Laurencin, C.T., Prog. Polym. Sci. 32 (2007) 762.
11.Wei, Q.L.; Kang, S.Z.; Mu, J. Colloids Surf., A: Physicochem. Eng. Aspects 247 (2004) 125.
12.Pagga, U., Polym. Deg. Stab. 59 (1998) 371.
13.T. Seidenstucker & H.-G. Fritz. Polym. Sci. 59 (1998) 279-285
14.Krzan, A.; Hemjinda, S.; Miertus, S.; Corti, A.; Chiellini, E., Polym. Degrad. Stab. 91 (2006) 2819.
15.郭儒謙,塑化劑與電漿處理對生物可分解聚乙烯醇/澱粉摻合物物性影響之研究,大同大學材料工程研究所碩士論文 (2005)
16.Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S., Chem. Rev. 99 (1999) 3181.
17.Albertsson, A. C.; Varma, I. K., BioMacromol. 4 (2003)1466.
18.Jones, D. S.; Djokic, J.; McCoy C. P., Biomater. 23 (2002) 4449.
19.Arvanitoyannis, I.; Biliaderis, C. G.; Ogawa, H.; Kawasaki, N., Carbohydr. Polym. 36 (1998) 89.
20.Chemistry and Chemical Biology. John, F. R. Glycoscience, Eds. Fraser, R. B.; Tatsuta, K.; Thiem, J. Springer-Verlag, Berlin Heidelberg, (2008) 1438-1468.
21.Bemiller, J. N.; Whistler, R. L. “Food Chemistry” 3rd ed. (New York, Marcel Dekker, Inc., 1996) 191-195.
22.Richard, F. T.; Karkalas, J.; Xin, Q. J. Cereal, Chem. 39 (2004) 151.
23.吳靜宜,生物可分解性聚己內酯/澱粉之研究,大同大學材料工程研究所碩士論文 (2006).
24.Zobel, H. F.; Argo, I. Starch/Stärke 40 (1998) 44.
25.Daniel, J. G.; Brigitte, B.; Paul, M. B., Carbohy. Polym. 32 (1997) 177.
26.Imberty, A.; Buleon, A.; Tran, M. B., Starch/Stärke 43 (1991) 375.
27.Wassenius, H.; Löfroth, J. E.; Nydén, M., Starch/Stärke 58 (2006) 66.
28.Tester, R. F.; Karkalas, J. Starch. In: Steinbu¨chel., Biopolymers 6 (Wiley–Vch, Weinheim, 2002) 381-438.
29.R. Hoover.; Li, Y. X.; Hynes, G.; Senanayake, N., Food Hydrocolloids, 11 (1997) 401.
30.Chemistry and Chemical Biology. John, F. R. Glycoscience 2nd ed. Eds. Bertram, O.; Fraser, R.; Kuniaki, T.; Joachim, T. (Springer-Verlag, Berlin Heidelberg, 2008) 1438-1472.
31.張家誠,癸二酸改質與鈦系偶合劑處理碳酸鈣對熱塑性澱粉性質影響之研究,大同大學材料工程研究所碩士論文 (2010).
32.Jacobs, H.; Delcour, J. A.; Agnc, J. Food Chem. 46;8 (1998) 2895.
33.Biliaderis, C. G.; Page, C. M.; Maurice, T. J.; Juliano, B. O.; Agnc, J. Food Chem. 34 (1986) 6.
34.Atwell, W. A.; Hood, L. F.; Lineback, D. R.; Marston, E. V.; Zobel, H. F. Cereal , Foods Wood 33 (1998) 306.
35.Vasanthan, T.; Bhatty, R. S. Cereal., Chem. 73;2 (1996) 199.
36.Eliasson, A. C., Starch 37;11 (1985) 411.
37.Morrison, W. R.; Tester, R. F., Carbohydr. Res. 245 (1993) 289.
38.Wang, L.; Seib, P. A. Cereal., Chem. 73;2 (1996) 167.
39.Alsberg, C. L. Plant Physiol. 13 (1938) 295.
40.Morrison, W. R.; Tester, R. F. J. Cereal Sci. 20(1) (1994) 69.
41.Tester, R. F.; Morrison, W. R. J. Cereal Sci. 20(2) (1994) 175.
42.Colonna, P.; Mercier, C. Photochemistry 24;8 (1985) 1667.
43.Gudmundsson, M.; Eliasson, A. C. Acta .Agric. Scand. 39 (1989) 101.
44.Tester, R. F. Food Hydrocolloids 11;3 (1997) 293.
45.Robin, J. P.; Mercier, C.; Duprat, F.; Guilbot, A. Starch 27;2 (1975) 36.
46.Collison, R. Starch and its derivatives 4th ed, Radley, J. A. (Chapman and Hall Ltd., London, (1968) 168-178.
47.Takeda, C.; Takeda, Y.; Hizukuri, S. Cereal Chem. 66 (1989) 22.
48.Daniel, J. G.; Brigitte, B.; Baldwin, P. M. Carbohydr. Polym. 32 (1997) 177.
49.Fishman, M. L.; Coffin, D. R.; Konstance, R. P.; Onwulata, C. I. Carbohydr. Polym. 41 (2000) 317.
50.Yu, J.; Gao, J.; Lin, T. J. Polym. Sci. 62 (1996) 1491.
51.Wang, L.; Shogren R. L., Carriere C. Polym. Eng. Sci. 40 (2000) 499.
52.Barret, A.; Kaletunc, G.; Rosenburg, S.; Breslauer, K. Carbohydr. Polym. 26 (1995) 261.
53.Ma, X.F.; Yu, J. Starch/Starke 56(11) (2004) 545.
54.Ma, X.F.; Yu, J. Polym. Int. 53 (2004) 1780.
55.Bader, H.G.; Goritz, D. Starch 46 (1994) 435.
56.Jane, J.L.; Chen, J.F. Cereal Chem. 69 (1992) 60.
57.Vansoest, J. J. G.; Hulleman, S. H. D,; Wit, D.; Vliegenthart, J. F. D. Industrial Crops and Products 5 (1996) 11.
58.Schmaljohann, D.; Pötschke, P.; Häßler, R.; Voit, B. I.; Froehling, P. E.; Mostert, B.; Loontjens, J. A. Macromolecules 32 (1999) 6333.
59.Kijchavengkul, T. S.; Rafael, A.; Rubino, M.; Mathieu, N.; Fernandez, R. T. Polym. Test. 25 (2006) 1006.
60.Sophie, V. B. M.; Feuilloley, P.; Silvestre, F. J. Polym. Environ. 4 (2000) 183.
61.ASTM Standard D 5338, Standard Test Method, West Conshohocken, PA, 1998.
62.International Standard ISO 14855, Geneva, Switzerland, 1999.
63.Dřímal, P.; Hoffmann, J.; Družbík, M. Polym. Test. 26 (2007) 729.
64.International Standard ISO 17556, 2003.
65.Bule´on, A. Int. J. Biol. Macromol. 23 (1998) 85.
66.Vansoest, J. J. G.; Hulleman, S. H. D,; Wit, D.; Vliegenthart, J. F. D. Industrial Crops and Products 5 (1996) 11.
67.Tang, J. C.; Zhang, Z. G.; Song, Z. F.; Chen, L. R.; Hou, X.; Yao, K. G. Eur. Polym. J. 42 (2006) 3360.
68.Sweta, M.; Prakash, J. J.; Domb, A. J.; Kumar, N. Eur. J. Pharm. Biopharm. 64 (2006) 277.
69.Najafi, F. H.; Mohammad, N. Biomaterials 24 (2003) 1175.
70.Lee, J. S.; Joo, M. K.; Oh, H. J.; Sohn, Y. S. Polymer 47 (2006) 3760.
71.Poomali, Siddaramaiah, B. Suresha, Joong.H.L Materials. 492 (2008) 486.
72.ASTM Standard D 570-98, Standard Test Method for Water Absorption of Plastics, 2010.
73.García, N. L.; Famá, L.; Dufresne, A.; Aranguren, M.; Goyanes, S. Food Res. Int. 42 (2009) 976.
74.楊森源,生物可分解性聚乙烯醇/樹薯澱粉混煉物之特性研究,大同大學材料工程研究所博士論文 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top