跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/15 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李承峯
研究生(外文):Cheng-Feng Li
論文名稱:用於微波熱療手術的加熱天線針之研發
論文名稱(外文):DESIGN AND DEVELOPMENT OF NEEDLE ANTENNAS USED IN MICROWAVE ABLATION
指導教授:黃啟芳黃啟芳引用關係
指導教授(外文):Chi-Fang Huang
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:84
中文關鍵詞:損耗正切參數介電參數熱傳導方程式特定吸收率漏波電纜微波加熱
外文關鍵詞:Special Absorption Rate(SAR)Leaky Coaxial CableMicrowave AblationBio-heat EquationDielectric ConstantLoss Tangent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,微波加熱技術在醫學上是非常熱門,但是由於微波天線是非常貴的,導致一般人是負擔不起,因為這個原因,我們必須研發較便宜微波針,讓這個技術普及到一般人民。一開始由於我們不知道豬肝的介電參數和損耗常數,所以我們必須量測這些物理性質,在這篇論文我們是利用共振腔理論來測出,然後利用所量出來的物理值來設計天線並且模擬天線在豬肝裡的物理表現,在這篇論文我,們模擬返回損失,特定吸收率和近場的場型等,這些我們使用一套模擬軟體,這個軟體的演算法為有限差分時域方法。在實驗的部分,我們分為兩個部分,一是量測天線的基本物理特性,返回的損失和特定吸收率,在量測特定吸收率方法,我們是利用加熱溫度的速率來計算出數值。二是實際應用在動物上,我們做的實驗為兔子的肝臟與脾臟的加熱實驗並且觀察其加熱情況和做生化分析。
A microwave ablation system for the coaxial cable with the slots ablation of the pig liver is investigated. At first, the dielectric complex constant is measured by the cavity theory and then the new coaxial antenna with the slots is presented. It is simulated its physical characteristics, which is the return loss, the specific absorption rate (SAR) and the near field, by CST studio suite, which based on the finite-difference time-domain method, when the new microwave ablation antenna inserts into the pig liver. The measured port is that the return loss of this antenna which inserts into the pig liver is measured by the vector network analysis (VNA) and the SAR measurement is presented by the temperature rise rate of this antenna which inserts into the pig liver and travel that the radiation power transfer to the heat. Finally, the new antenna is applied in the rabbit experiment and we discuss the effort of the new antenna which inserts into the rabbit liver.
ABSTRACT i
摘要 ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Scope of Present Study 7
1.3 Chapter Outline 7
Chapter 2 Theoretical Analysis 8
2.1 Principles and Applications of Microwave Ablation 8
2.1.1 Physics of Microwave Ablation 8
2.1.2 Microwave Ablation Technique [11] 10
2.2 Leaky Coaxial Cable Theory [12] 11
2.2.1 Distribution of Magnetic Current of One Slot 12
2.2.2 Radiated Field of One Slot 14
2.2.3 Radiated Field of Leaky Coaxial Cable in Free Space 15
2.3 Special Absorption Rate Theory [14] 17
2.3.1 Bio-heat Equation [17] 18
2.3.2 Stability 19
2.3.3 Boundary Condition 22
2.4.4 Initial Temperature in Human Body 23
2.4.5 Thermal Model for Measured Probe [18] 24
Chapter 3 Design and Simulation of Microwave Ablation Antenna 28
3.1 Introduction 28
3.2 Measuring Dielectric Constant and Loss Tangent of Pig Liver 30
3.3 Design and Simulation of Microwave Ablation Antenna 40
Chapter 4 Experiment of Temperature Distribution and Thermal SAR 45
4.1 Measured Specific Heat and Mass Density of Pig Liver 45
4.2 Setup of Measurement System 49
4.3 Experimental Study of Temperature Distribution 52
4.4 Measurement and Simulation of Thermal SAR in Pig Liver 60
4.5 Simulated SAR and Near Field of New Microwave Ablation Antenna in Pig Liver 62
Chapter 5 Animal Experiment 64
5.1 Animal Experiments of Microwave Ablation 64
5.1.1 Experiment 64
5.1.2 Result 66
Chapter 6 Conclusion 68
REFERENCES 69
[1] D. Haemmerich and D.J. Schutt, “RF Ablation at Low Frequencies for Targeted Tumor Heating: In Vitro and Computational Modeling Results,” IEEE Transactions on Biomedical Engineering, vol. 58, pp.404-410, Feb. 2011.
[2] F. Sterzeret al., “RF Therapy for Malignancy,” IEEE Spectrum, vol. 17, pp. 32-37, Dec. 1980.
[3] Wei-Hung Lo, “Development of Magnetic Induction Hyperthermia System and Its Animal Treatment Experiment,” M.S. thesis, Graduate Institute of Communication Engineering, Tatung University, Taipei, Taiwan, 2010.
[4] C.L. Brace, D.W. van der Weide, F.T. Lee, P.F. Laeseke, and L. Sampson, “Analysis and Experimental Validation of a Triaxial Antenna for Microwave Tumor Ablation, ” IEEE MTT-S International Microwave Symposium Digest, 2004, pp. 1437-1440.
[5] Kazuyuki Saito, Kousuke Tsubouchi, Masaharu Takahashi, and Koichi Ito, “Practical evaluations on heating characteristics of thin microwave antenna for intracavitary thermal therapy,” IEEE International Annual Engineering in Medicine and Biology Society Conference, 2010, pp. 2755-2758.
[6] K.S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, vol.14, pp. 302-307, May 1966.
[7] http://en.wikipedia.org/wiki/ISM_band
[8] David K. Cheng, Field and Wave Electromagnetics, 2nd ed. New York: Wesley, 1989.
[9] David M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2004.
[10] Roger F. Harrington, Time-Harmonic Electromagnetic Fields, New York: Wiley, 2001.
[11] C. J. Simon, D. E. Dupuy, and W.W. Mayo-Smith, “Microwave ablation: Principles and Applications,” Radiographics, vol. 25, pp. S69-S83, Oct. 2005.
[12] Zixin Zhao, Xiaodong Yang, and Shuxiang Guo, “A Coupling Loss Algorithm of Leaky Coaxial Cable in the Blind Zone,” IEEE International Mechatronics and Automation Conference, 2008, pp. 919-923.
[13] Junhong Wang and Shuisheng Jian, “Coupling Loss Calculation of the Leaky Coaxial Cables,” Journal of the China Railway Society, vol. 18, pp17-22, Dec. 1996.
[14] http://en.wikipedia.org/wiki/Specific_absorption_rate
[15] T. Iyama, T. Onishi, Y. Tarusawa, S. Uebayashi, and T. Nojima, “Novel specific Absorption Rate (SAR) Measurement Method Using a Flat Phantom,” IEEE Transactions on Electromagnetic Compatibility, vol. 50, pp. 43-51, Aug. 2008.
[16] Q. Balzano, O. Garay, and F. R. Steel, “Heating of Biological Tissue in The Induction Field of VHF Portable Radio Transmitters,” IEEE Transactions on Vehicular Technolog, vol. 27, pp. 51-56, May 1978.
[17] Zhi-Ming Guo, “SAR Distribution and Temperature Increase in the Human Head for Mobile Communication,” M.S. thesis, Graduate Institute of Electric Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2002.
[18] Mark S. Mirotznik, Erik Cheever, and Kenneth R. Foster,” High-Resolution Measurements of the Specific Absorption Rate Produced by Small Antennas in Lossy Media,” IEEE Transactions on Instrumentation and Measurement, vol. 45, pp. 754-756, Jun. 1996.
[19] J. D. Jackson, Classical Electrodynamic, 3rd ed. New York: Wesley, 1998.
[20] Chi-Fang Huang, “A Cascaded 2-D Array of Micro-strip Antenna,” Tatung Journal, vol. XIV, pp. 69-83, Nov.1984.
[21] http://www.cst.com
[22] Charles M. Knop, “The Radiation Fields from a Circumferential Slot on a Metal Cylinder Coated with a Lossy Dielectric,” IRE Transactions on Antennas and Propagation, vol. 9, pp. 535-545, Dec. 1961.
[23] Harris Benson, University Physics, Revised ed. New York: Wiley, 1995.
[24] http://en.wikipedia.org/wiki/Archimedes'_principle
[25] http://www.agilent.com
[26] http://www.amplifiers.com
[27] Yoshinobu Okano, Toshiya Sato, and Youji Sugama, “A Specific Absorption Rate Measurement Method Using Fiber Optic Thermal Sensors,” IEEE Transactions on Instrumentation and Measurement, vol. 59, pp. 1705-1714, June 2010.
[28] IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, IEEE Standard C95.3, 2002
[29] http://www.cst.com/Content/Documents/Events/UGM2007/05-Wittig.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊