(3.238.173.209) 您好!臺灣時間:2021/05/12 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭煜騰
研究生(外文):Kuo Yu-Teng
論文名稱:以水熱法製備二氧化鈦奈米異質結構及其於紫外光感測之應用
論文名稱(外文):Preparation of hydrothermal grown TiO2 nano-heterojunction structure and its application to UV sensors
指導教授:汪楷茗
指導教授(外文):Uang Kai-Ming
口試委員:汪楷茗陳聰敏林俊昱黃俊達
口試委員(外文):Uang Kai-MingChen Tron-Min
口試日期:2011-07-29
學位類別:碩士
校院名稱:吳鳳科技大學
系所名稱:光機電暨材料研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:66
中文關鍵詞:水熱法、二氧化鈦奈米線、異質接面奈米結構、紫外線感測器
外文關鍵詞:hydrothermal growth, TiO2 nanowires, nano-heterojunction, UV sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
研究利用水熱法(Hydrothermal Growth, HTG)在FTO玻璃基板上成長二氧化鈦奈米線(TiO2 nanowires, TiO2-NWs),再以TiO2-NWs為基材搭配另一層p型氧化銅(CuO)材料,以形成p-CuO/TiO2-NWs異質接面奈米結構,藉由奈米結構之一維量子侷限效應,提升元件之光電響應能力,該光電響應以波長365 nm紫外光最為明顯,本研究所設計之元件將可應用於紫外光感測器。本研究方法具有低溫製程、製程時間短、以及製作成本低廉、適用於大面積等優點。本研究提出之元件結構,在365 nm波長紫外光照射下,其順向與逆向之光電流密度均顯著增加;透過365 nm波長光線照射(on、off連續切換)之暫態光電流密度響應分析,於逆偏5 V時產生之電流密度約為暗電流之10倍。本研究所開發之元件具有快速的光響應速度與穩定操作特性,將可作為紫外光檢測等之應用,在感測器等光電元件上將會有極大的發展潛力。
In this work, we developed a nano-heterojunction structure for the applications of nano-optoelectronic sensors by using hydrothermal growth (HTG) method to produce TiO2 nanowires (TiO2-NWs) on FTO glass substrate. Based on the HTG grown TiO2-NWs, another P-type CuO film was then deposited to match TiO2-NWs as nano hetero-structure. Due to 1-D quantum effect of n-TiO2-NWs/p-CuO heterojunction structure, the sensitivity of photoelectric response reveals significant improvement. The HTG process is cost effect and can be conducted in low temperature and low pressure conditions. The proposed device structure shows significant increase in forward and reverse current density under UV (365 nm in wavelength) illumination. A distinct increase in the photo induced current density of about 10 times under UV light irradiation (on, off continuous switching) and 5 V reverse bias was obtained. The devices developed in this research with fast response and stable operation of the light response characteristics, would have a great potential for optoelectronics development, serving as the UV detection, the sensors and other optoelectronic components.
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2二氧化鈦簡介 1
1.3實驗動機 5
第二章 相關研究 7
2.1一維奈米線結構之成長方法 7
2.1.1模具輔助法 8
2.1.1.1使用具有一維奈米結構之模具 8
2.1.1.2適當的界面活性劑 8
2.1.2 VLS方法成長 10
2.1.3螺旋差排導致一維成長(Screw dislocation growth) 11
2.1.4氧化物促進一維奈米線成長 11
2.1.5 Solution-Liquid-Solid & Solid-Liquid-Solid方法成長 13
2.1.6非等方向性奈米晶體之成長 13
2.2二氧化鈦之不同製程 14
2.2.1氣相化學沉積法(Chemical Vapor Dposition,CVD) 14
2.2.2溶膠凝膠法(Sol-gel method) 15
2.2.3濺鍍法 (Sputtering) 15
2.2.4蒸鍍法(Evaporation) 15
2.3氧化鈦奈米線製程方式 16
2.3.1模板製造法 16
2.3.2陽極氧化鈦(Anodic Aluminum Oxide) 16
2.3.3水熱法 (Hydrothermal method) 17
2.5晶種層 18
第三章 實驗設備介紹 19
3.1前言 19
3.2 實驗材料 20
3.3 實驗設備 21
3.3.1壓力釜 21
3.3.2高溫烘箱 22
3.4儀器設備 22
3.4.1射頻磁控濺鍍機 22
3.4.2掃描式電子顯微鏡 24
3.4.3高解析場發射掃描穿透式電子顯微鏡 26
第四章水熱法成長TiO2-NWs之研究 28
4.1水熱法機制 28
4.2可調變因素 33
4.2.1不同濃度對TiO2-NWs成長之影響 33
4-2-2成長時間對TiO2-NWs之影響 34
第五章n-TiO2/p-CuO奈米異質接面之研究 35
5.1元件結構之設計與製程步驟 36
5.1.1 元件結構之設計與製程步驟 36
5.2 n-TiO2-NWs/p-CuO之奈米異質接面材料分析 38
5.3 n-TiO2-NWs/p-CuO之奈米異質接面結構之電性分析 43
第六章 結論及後續研究 47
6-1結論 47
6-2後續研究 48
參考文獻 49

圖目錄
圖1.1二氧化鈦晶體結構a):Anatase;(b):Rutile 3
圖1.3二氧化鈦之分子鍵結方式(a):Anatase;(b):Rutile 3
圖2.1各種一維奈米結構成長方式 7
圖2.2利用模具的方式成長一微奈米結構(a)陽極氧化鋁之俯視圖(b)陽極氧化鋁之側視圖(c)利用陽極氧化鋁成長奈米線或奈米管之示意圖 9
圖2.3利用界面活性劑分子形成微胞或逆微胞做為模具成長一微奈米結構圖 9
圖2.4利用界面活性劑控制CdSe之長寬比(a)長寬比為1(b)長寬比為4(c)長寬比為10 9
圖2.5以Au為觸媒利用VLS機制成長Ge之奈米線(a)Au與Ge之相圖(b)成長機制示意圖 10
圖2.6螺旋差排導致一維成長(a)螺旋差排示意圖(b)以螺旋差排導致一維成長In2O3奈米線 11
圖2.7氧化物促進一維奈米線成長式一圖(a)氣相中的前趨物成核並產生Si 包理在SiOx內之複合結構(b)晶和成長型成奈米線或是鏈狀結構之奈米線 12
圖2.8以Solution-Liquid-Solid方式成長一維結構示意圖 13
圖2.9非等方向晶體ZnO以Thermal CVD 成長一維奈米柱(a)成長基至示意圖(b)SEM圖 14
圖3.1實驗流程圖 19
圖3.2圖3.2壓力釜(a)外鍋不鏽鋼杯(b)內鍋鐵氟龍杯 21
圖3.3高溫烘箱 22
圖3.4 射頻磁控濺鍍系統示意圖 24
圖3.5高解析熱電子型場發射掃描式電子顯微鏡 25
圖3.6微電子顯微鏡主體結構示意圖 25
圖3.7解析場發射掃描穿透式電子顯微鏡 27
圖4.1本研究之TiO2-NWs製作流程圖(a)化學容液調配(b)滴入Ti(OBu)4(c) 將化學溶液配入60ml鐵氟龍杯(d)將基板放入鐵氟龍杯內後壓緊(e) 將鐵氟龍杯後放入壓力釜鎖封緊 29
圖4.2所成長TiO2-NWs之SEM圖 30
圖4.3TiO2之X光繞射分析 31
圖4.4單跟TiO2-NWs的高倍率TEM圖和SAED圖 32
圖4.5不同濃度進行水熱法所成長TiO2-NWs之SEM圖;(a) 1%、(b) 1.6%、(c) 3.2% 33
圖4.6不同時間進行水熱法所成長TiO2-NWs之SEM圖;(a)成長4hr、(b)成長8hr、(c)成長16hr 34
圖5.1本研究之元件結構示意圖 36
圖5.2元件製作流程圖(a) 玻璃基板清洗(b)水熱法成長TiO2-NWs(c) 沈積p-CuO(d) 沈積透明導電層(e)上電極 36
圖5.3於二氧化鈦奈米線上沈積不同厚度之氧化銅薄膜:(a)10nm、(b)32nm、(c)46nm 38
圖5.4(a)n-TiO2-NWs/p-CuO之SEM圖,(b) n-TiO2-NWs/p-CuO之EDS比率圖 39
圖5.5(a)TiO2 TEM圖,(b)氧化鋅CuOTEM圖影像,及(c)TiO2之TEM影 39
圖5.6(a)接面TEM影像,(b) CuO之EDS比率圖,(C) TiO2之EDS比率 40
圖5.7氧化銅厚度在15nm時所量出的N-K值 41
圖5.8氧化銅厚度在26nm時所量出的N-K值 41
圖5.9氧化銅厚度在32nm時所量出的N-K值 42
圖5.10氧化銅厚度在47nm時所量出的N-K值 42
圖5.11有無紫外光 (波長254 nm、365 nm)照射下之TiO2-NWs電流密度-電壓量測曲線圖 43
圖5.12n-TiO2-NWs/p-CuO 之奈米異質接面結構之電流密度-電壓曲線圖;(a)有無紫外光與不同紫外光(波長254nm、365nm),之逆偏量測圖 (b)I-V順偏量測圖 44
圖5.13 n-TiO2 /p-CuO奈米異質接面結構經紫外光線照射(波長365 nm,on、off連續切換)之暫態光電流密度響應分析(於偏壓-5 V時) 44
圖5.14n-TiO2-NWs/p-CuO之(a)I-V順向曲線,(b)I-V逆偏曲線,(c)偏壓-5V時之電流密度-時間曲線圖 45
圖5.15不同紫外光照射強度下n-TiO2-NWs/p-CuO之J-V量測曲線圖:(a)逆偏曲線圖,(b)順偏曲線圖 46

1.R. Marchand, .L. Brohan and M. Tournoux, “TiO2 (B) a new form of titanium dioxide and the potassium octatitante K2Ti8O17”Mat. Res. Bull., Vol. 15, p.1129 (1980).
2.T.E. Weirich, M. Winterer, S. Seifried, H. Hahn, and H. Fuess, “Rietveld Analysis of Electron Powder Diffaction Data from Nanocrystalline Anatase,TiO2” Ultramicroscopy, Vol.81, p.263 (2000).
3.J.K. Burdett,T. Hughbanks, G. J.Miller, J. W.Richardson, and J.V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffaction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxde at 15K and 295K” J. of the Am. Chem.Soc., Vol.109, p.3639 (1987).
4.E. P. Meagher and G. A. Lager, “Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structre of rutile and brookite at high temperature” Canadian Mineralogist, Vol.17,p.77 (1979).
5.M. Latroche, L. Brohan, R. Marchand, and M. Tournoux, “New hollandite oxides: TiO2 (H)and K0.06 TiO2”J.of Solid State Chem., Vol.81,p.78 (1989).
6.J. Akimoto,Y.Gotoh, Y.Oosawa, N.Nonose, T. Kumagai, K. Aoki and H. Takei, “Topotactic Oxidation of Ramsdellite-Type Li0.5TiO2, a New Polymorph of Titanium Dioxide:TiO2(R)”, J. of Solid State Chem., Vol.113, p.27 (1994).
7.P.Y Simons and F.Dachille, “Thestructure of TiO2(II),a high-pressure phase of TiO2”Acta. Crystal., Vol.23,p.334 (1967).
8.R. Lee Penn and Jillian F. Banfield, American Mineralogist, Vol.84 ,p.871 (1999).
9.曾志荏,“利用氧化鋅奈米線為基材製備奈米異質接面結構及其光電特性之研究”,國立成功大學微電子工程研究所碩士論文,July (2009).
10.陳豪襄,“以水熱法至被氧化鋅奈米異質結構並建構於軟性基板上之研究及其於紫外線感測器”吳鳳科技大學光機電暨材料研究所August (2010).
11.T.Fu-Shou, W.Shui-Jinn 1,T.Yung-Chun “Preparation of p-SnO/n-ZnO Heterojunction Nanowire Arrays and Their Optoelectronic Characteristics under UV Illumination Applied Physics Express 4 025002 (2011).
12. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Ying, F. Kim,H. Yan, Adv. Mater. Vol. 15, p253 (2003).
13.R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, pp. 89-90 (1964).
14.Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, pp. 3165-3166 (2001).
15.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science, Vol. 270, 5243, pp. 1791-1794, (1995).
16.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis ,Characterization, and Applications,” ADV. MATER., Vol. no. 15, p. 353 (2003)
17.E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, p. 1971, 1997
18.M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, Vol. 20, no. 15, pp. 1293-1295, 2008
19.Y.W. Heo, M. Kaufman, K. Pruessner, D.P. Norton, F. Ren, M.F. Chisholm, andP.H. Fleming, Solid-State Electron. Vol.47, p2269 (2003)
20.W. I. Park, S. J. An, J. L. Yang, G. -C. Yi, S. Hong, T. Joo, and M. Kim, J. Phys.Chem. B. Vol. 108, p15457 (2004)
21.L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc., Vol. 113(8), pp. 2826-2833 (1991).
22.L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., Vol. 105(17), pp. 3350-3352( 2001).
23.L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials., Vol. 13, no. 2, pp. 233-235 (2001).
24.Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., Vol. 124(44), pp. 12954-12955 (2002).
25.Jeremy K. Burdett, Timothy Hughbanks, Gordon J. Miller, JamesW.Richardson, and Joseph V. Smith, J. Am.Chem. Soc., Vol.109 p.3639 (1987) .
26.http://www.ndhu.edu.tw/~nano/labtext/DSSC lab.pdf
27.Hee-Dong Nam, Byung-Ha Lee, Sun-Jae Kim, Chung-Hwan Jung,Ju-Hyeon Lee and Sung Park, Jpn. J. Appl. Phys., Vol.37 , p.4603 (1998).
28.T. Matsumoto, Y. Murakami, and Y. Takasu, Chem. Lett., p.177 (1999).
29.Brain L. Bischoff and Marc A. Anderson, Chem. Mater., Vol. 7 ,p.1772 (1995).
30.I. Moriguchi, H. Maeda, Y. Teraoka, and S. Kagawa, Vol.9 , p.1050 (1997).
31.I. Moriguchi, H. Maeda, Y. Teraoka, and S. Kagawa, J. Am. Chem. Soc., Vol.117 , p.1139 (1995).
32.S. Music, M. Gotic, M. Ivanda, S. Popovic, A. Turkovic, R. Trojko, A.Sekulic, and K. Furic, Mater. Sci. Eng. B, Vol.47 , p.33 (1997).
33.S. Music, M. Gotic, M. Ivanda, S. Popovic, R. Trojko, A. Sekulic, andK. Furic, Mater. Lett., Vol.28,p 225101 (1996).
34.A.M. Tonejc, A. Turkovic, M. Gotic, S. Music, M. Vukovic, R. Trojko,and A. Tonejc, Mater. Lett., Vol.31 ,p .127 (1997).
35.R. R. Bacsa and M. Gratzel, J. Am Ceram, Soc., Vol.79 , p.2185 (1996).
36.H. K. Park, D. K. Kim, and C. H. Kim, J. Am. Ceram. Soc., Vol.80, p.743 (1997).
37.J. Yang, S. Mei, and J. M. F. Ferreira, J. Am. Ceram. Soc., Vol.83,p.1361 (2000).
38.Y. Murakami, T. Matsumoto, and Y. Takasu, J. Phys. Chem. B, Vol.103 , p.1836 (1999).
39.M. Adachi, Y. Murata, M. Harada, Chem. Lett. Vol.8, p.942 (2000).
40.M. H. Huang, Samuel Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, Vol. 292, p.1897 (2001).
41.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir, Vol.14, p.3160 (1998).
42.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv.Materials, Vol. 11, p.1307 (1999).
43.D. S. Seo, J. K. Lee, H. Kim, J. Crystal Growth, Vol. 229,p.428 (2001).
44.Y. Q. Wang, G. Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue, ChemicalPhysics Letters, Vol.365,p. 427 (2002).
45.Q. Chen, G. H. Du, S. Zhang, L. M. Peng, Acta Crystallogr. B , Vol.58, pp.587 -593 (2002).
46.Z. Ding, G. Q. Lu, and P. F. Greenfield, J. Phys. Chem. B, Vol.104, p4815 (2000).
47.L. Luo, Y Zhang, S. S. Mao,and L. Lin, “Fabrication and characterization of ZnO nanowire based UV detectors,” Sensors and Actuators A, Vol. 127, pp. 201-206 (2006)
48.Xiaoming Sun and Yadong Li, Chem. Eur. J. Vol.9, pp.2229 ± 2238 (2003)
49.Tomoko Kasuga, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino,and Koichi Niihara, Langmuir. Vol.14, pp.3160-3163 (1998).
50.Yuanzhi Li, Nam-Hee Lee, Doo-Sun Hwang, Jae Sung Song,Eun GuLee, and Sun-Jae Kim, Langmuir, Vol.20, pp.10838-10844 (2004).
51.Chen-Chi Wang and Jackie Y. Ying, Chem. Mater. Vol.11,pp.3113-3120 (1999).
52.James Ovenstone and Kazumichi Yanagisawa, Chem. Mater. Vol.11, pp.2770-2774 (1999).
53.Wenzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, ZhenhuaZhou, Gongquan Sun, and Qin Xin, J. Phys. Chem. B, Vol.107,pp.6292-6299 ( 2003).
54.Minoru Umeda , Mitsuhiro Kokubo, Mohamed Mohamedi , IsamuUchida 2, M. Umeda et al. / Electrochimica Acta Vol.48 ,pp.1367-1374 (2003).
55.C. Y. Jiang, X. W. Sun, G. Q. Lo, and D. L. Kwong, “Improved dye-sensitized solar cell with a ZnO-nanoflower photoanode,” Appl. Phys. Lett., Vol. 90, p.263501 (2007)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔