跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 11:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠慧
研究生(外文):Kuan-Hui Lin
論文名稱:粒線體與細胞核基因體間之交互作用
論文名稱(外文):Interaction between mitochondrial and nuclear genomes
指導教授:呂俊毅呂俊毅引用關係
指導教授(外文):Jun-Yi Leu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:50
中文關鍵詞:粒線體
外文關鍵詞:cybridmitochondria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
粒線體與細胞核基因之間的溝通,對於維持細胞正常的生理功能是非常重要的。為了瞭解粒線體與細胞核之間在演化的過程中如何共同適應,先要知道外來的粒線體基因如何影響核基因的表現以及細胞的健康。我使用兩種親源關係相近的酵母菌(Saccharomyces cerevisiae 及 S. paradoxus)來製作細胞質融合但細胞核不融合之「細胞質融合細胞」(cybrids)。觀察酵母菌的生長情形,我發現在正常溫度(28℃)下,生長在YPD (以葡萄糖為唯一碳源之培養液,酵母菌在此培養液中主要行發酵作用來產生能量)及YPGly (以甘油為唯一碳源之培養液,酵母菌在此培養液中只可行呼吸作用來產生能量)的細胞質融合細胞與其細胞核給予者生長情形相似。然而,生長在較高溫(37℃)或較低溫(16℃)時,細胞質融合細胞與核的給予者相比,生長速率就降低許多,這結果顯示了在這些溫度(半限制溫度,37℃或16℃)下,細胞質融合細胞中粒線體的功能可能發生問題。接著,我使用生物晶片(microarray)來檢測細胞質融合細胞中核基因的表現情形。我發現將細胞質融合細胞(ScSpmt)培養在YPGly的培養液中,生長在37℃時,與正常S. cerevisiae細胞相比,會有562細胞核基因發生不正常的調節現象;另外,同樣將細胞質融合細胞(SpScmt)培養在YPGly的培養液中,但是生長在16℃時,與正常的S. paradoxus細胞相比,有1132個基因有不正常調節的現象。有趣的是,我發現細胞核中大部分與粒線體蛋白質轉譯有關的基因,在細胞質融合細胞生長在半限制溫度下表現量會有上升的現象,我發現這些基因表現量的上升可能是為了補償外來粒線體基因所造成的不相容現象。除此之外,細胞質融合細胞(SpScmt)中的細胞色素氧化酶(cytochrome c oxidase),不管是在正常溫度或是低溫下,都有活性降低的現象,然而在細胞質融合細胞(ScSpmt)中粒線體蛋白的活性卻沒有降低的現象,這結果顯示可能有其他的因素影響細胞質融合細胞的生長。我的研究證明了,即使相近物種的外來粒線體與原來粒線體基因的序列極為相似,仍會影響核基因的表現及細胞的生理作用。
The communication between mitochondrial and nuclear genomes is important for maintaining normal cell metabolism. To understand how these two genomes might have co-adapted during evolution, I examined how foreign mitochondrial DNA influences nuclear gene expression and cell fitness. I used two closely related yeast species, Saccharomyces cerevisiae and S. paradoxus, to construct interspecific cytoductants (cybrids). Results of phenotypic assays showed that the growth rate of cybrids were similar to their nuclear donors on YPD (a medium containing glucose as the sole carbon source, in which yeast cells grow by fermentation) and YPGly (a medium containing glycerol as the sole carbon source, in which yeast cells grow by respiration) plates at the normal growth temperature (28℃). However, I found that the growth rates of cybrids were much slower than those of their parents on glycerol plates at semi-restrictive temperatures (37℃ or 16℃), suggesting that the mitochondrial function in cybrid cells might be compromised at these temperatures. Using gene expression microarrays, I found 562 and 1132 genes have changed their expression levels in S. cerevisiae (ScSpmt) and S. paradoxus (SpScmt) cybrid cells respectively, when the cells were cultured in YPGly medium at semi-restrictive temperatures. Interestingly, most nuclear genes related to mitochondrial protein translation were upregulated in cybrids at semi-restrictive temperatures. It is possible that these genes are upregulated to compensate the deficiency caused by the incompatible foreign mitochondrial genomes. In addition, I observed that the activity of the cytochrome c oxidase, a critical enzyme in the mitochondrial function, was reduced in SpScmt cells but not in ScSpmt. It suggested that there are other factors that can affect the fitness of cybrids. This study demonstrates that a foreign mitochondrial genome can influence not only the expression of nuclear genes but also the cell physiology even though it is from a closely related species and shares high sequence homology.
致謝 ………………………………………………………………………………………………………………….. 3
中文摘要 ………………………………………………………………………………………………………….. 4
Abstract …………………………………………………………………………………………………………... 5
Introduction …………………………………………………………………………………………………….. 7
Results ……………………………………………………………………………………………………………. 11
Discussion ……………………………………………………………………………………………………... 18
Materials and Methods ……………………………………………………………………………………. 22
Figures ………………………………………………………………………………………….……………….. 27
Tables …………………………………………………………………………………………………………….. 43
Reference .………………………………………………………………………………………………………. 47

Butow, R.A., and Avadhani, N.G. (2004). Mitochondrial signaling: the retrograde response. Mol Cell 14, 1-15.
Castello, P.R., David, P.S., McClure, T., Crook, Z., and Poyton, R.O. (2006). Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3, 277-287.
Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., and Pfanner, N. (2009). Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell 138, 628-644.
Chou, J.Y., Hung, Y.S., Lin, K.H., Lee, H.Y., and Leu, J.Y. (2010). Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol 8, e1000432.
Dagsgaard, C., Taylor, L.E., O'Brien, K.M., and Poyton, R.O. (2001). Effects of anoxia and the mitochondrion on expression of aerobic nuclear COX genes in yeast: evidence for a signaling pathway from the mitochondrial genome to the nucleus. J Biol Chem 276, 7593-7601.
Ellison, C.K., and Burton, R.S. (2006). Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60, 1382-1391.
Ellison, C.K., and Burton, R.S. (2008). Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62, 631-638.
Epstein, C.B., Waddle, J.A., Hale, W.t., Dave, V., Thornton, J., Macatee, T.L., Garner, H.R., and Butow, R.A. (2001). Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12, 297-308.
Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998). The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440, 325-331.
Gershoni, M., Templeton, A.R., and Mishmar, D. (2009). Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31, 642-650.
Gray, M.W. (1999a). Evolution of organellar genomes. Curr Opin Genet Dev 9, 678-687.
Gray, M.W. (1999b). Mitochondrial Evolution. Science 283, 1476-1481.
Gupta, K.J., and Igamberdiev, A.U. (2011). The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion.
Hallstrom, T.C., and Moye-Rowley, W.S. (2000). Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275, 37347-37356.
Iurina, N.P., and Odintsova, M.S. (2008). [Mitochondrial signaling: retrograde regulation in yeast Saccharomyces cerevisiae]. Genetika 44, 1445-1452.
Kao, K.C., Schwartz, K., and Sherlock, G. (2010). A Genome-Wide Analysis Reveals No Nuclear Dobzhansky-Muller Pairs of Determinants of Speciation between S. cerevisiae and S. paradoxus, but Suggests More Complex Incompatibilities. PLoS Genetics 6, e1001038.
Lee, H.-Y., Chou, J.-Y., Cheong, L., Chang, N.-H., Yang, S.-Y., and Leu, J.-Y. (2008). Incompatibility of Nuclear and Mitochondrial Genomes Causes Hybrid Sterility between Two Yeast Species. Cell 135, 1065-1073.
Liepins, A., and Hennen, S. (1977). Cytochrome oxidase deficiency during development of amphibian nucleocytoplasmic hybrids. Dev Biol 57, 284-292.
Lipinski, K.A., Kaniak-Golik, A., and Golik, P. (2010). Maintenance and expression of the S. cerevisiae mitochondrial genome—From genetics to evolution and systems biology. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797, 1086-1098.
Liu, Z., and Butow, R.A. (1999). A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19, 6720-6728.
Liu, Z., and Butow, R.A. (2006). Mitochondrial retrograde signaling. Annu Rev Genet 40, 159-185.
Meyers, S., Schauer, W., Balzi, E., Wagner, M., Goffeau, A., and Golin, J. (1992). Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr Genet 21, 431-436.
Mishmar, D. (2002). Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences 100, 171-176.
Moison, M., Roux, F., Quadrado, M., Duval, R., Ekovich, M., Le, D.-H., Verzaux, M., and Budar, F. (2010). Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. The Plant Journal 63, 728-738.
Moyerowley, W. (2005). Retrograde regulation of multidrug resistance in. Gene 354, 15-21.
Nourani, A., Papajova, D., Delahodde, A., Jacq, C., and Subik, J. (1997). Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain. Mol Gen Genet 256, 397-405.
Perocchi, F., Jensen, L.J., Gagneur, J., Ahting, U., von Mering, C., Bork, P., Prokisch, H., and Steinmetz, L.M. (2006). Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet 2, e170.
Poyton, R.O., Castello, P.R., Ball, K.A., Woo, D.K., and Pan, N. (2009). Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177, 48-56.
Rawson, P.D. (2002). Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proceedings of the National Academy of Sciences 99, 12955-12958.
Replansky, T., Koufopanou, V., Greig, D., and Bell, G. (2008). Saccharomyces sensu stricto as a model system for evolution and ecology. Trends in Ecology & Evolution 23, 494-501.
Savkina, M., Temiakov, D., McAllister, W.T., and Anikin, M. (2010). Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation. J Biol Chem 285, 3957-3964.
Shedge, V., Davila, J., Arrieta-Montiel, M.P., Mohammed, S., and Mackenzie, S.A. (2010). Extensive Rearrangement of the Arabidopsis Mitochondrial Genome Elicits Cellular Conditions for Thermotolerance. Plant Physiology 152, 1960-1970.
Sniegowski, P.D., Dombrowski, P.G., and Fingerman, E. (2002). Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res 1, 299-306.
Sweeney, J., Kuehne, H., and Sniegowski, P. (2004a). Sympatric natural and populations have different thermal growth profiles. FEMS Yeast Research 4, 521-525.
Sweeney, J.Y., Kuehne, H.A., and Sniegowski, P.D. (2004b). Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Res 4, 521-525.
Traven, A., Wong, J.M., Xu, D., Sopta, M., and Ingles, C.J. (2001). Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276, 4020-4027.
Woo, D.K., Phang, T.L., Trawick, J.D., and Poyton, R.O. (2009). Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. Biochim Biophys Acta 1789, 135-145.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top