|
1.Keeney, S., C.N. Giroux, and N. Kleckner, Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 1997. 88(3): p. 375-84. 2.Li, J., G.W. Hooker, and G.S. Roeder, Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics, 2006. 173(4): p. 1969-81. 3.Keeney, S. and M.J. Neale, Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochem Soc Trans, 2006. 34(Pt 4): p. 523-5. 4.Lengsfeld, B.M., et al., Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol Cell, 2007. 28(4): p. 638-51. 5.Zakharyevich, K., et al., Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol Cell, 2010. 40(6): p. 1001-15. 6.Sung, P. and H. Klein, Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol, 2006. 7(10): p. 739-50. 7.Neale, M.J. and S. Keeney, Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature, 2006. 442(7099): p. 153-8. 8.Zickler, D. and N. Kleckner, Meiotic chromosomes: integrating structure and function. Annu Rev Genet, 1999. 33: p. 603-754. 9.San Filippo, J., P. Sung, and H. Klein, Mechanism of eukaryotic homologous recombination. Annu Rev Biochem, 2008. 77: p. 229-57. 10.Roeder, G.S. and J.M. Bailis, The pachytene checkpoint. Trends Genet, 2000. 16(9): p. 395-403. 11.Niu, H., et al., Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol Cell, 2009. 36(3): p. 393-404. 12.Niu, H., et al., Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol Biol Cell, 2005. 16(12): p. 5804-18. 13.Navadgi-Patil, V.M. and P.M. Burgers, The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol Cell, 2009. 36(5): p. 743-53. 14.Zanders, S., et al., Pch2 Modulates Chromatid Partner Choice During Meiotic Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics, 2011. 188(3): p. 511-21. 15.Wu, H.Y. and S.M. Burgess, Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr Biol, 2006. 16(24): p. 2473-9. 16.San-Segundo, P.A. and G.S. Roeder, Pch2 links chromatin silencing to meiotic checkpoint control. Cell, 1999. 97(3): p. 17.Page, S.L. and R.S. Hawley, The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol, 2004. 20: p. 525-58. 18.Cheng, C.H., et al., SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev, 2006. 20(15): p. 2067-81. 19.Lin, F.M., et al., Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J, 2010. 29(3): p. 586-96. 20.Eichinger, C.S. and S. Jentsch, Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proc Natl Acad Sci U S A, 2010. 107(25): p. 11370-5. 21.Traven, A. and J. Heierhorst, SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays, 2005. 27(4): p. 397-407. 22.Carballo, J.A., et al., Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell, 2008. 132(5): p. 758-70. 23.Li, J., et al., Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol Cell, 2002. 9(5): p. 1045-54. 24.Govin, J., et al., Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev, 2010. 24(16): p. 1772-86. 25.Kiianitsa, K., J.A. Solinger, and W.D. Heyer, Terminal association of Rad54 protein with the Rad51-dsDNA filament. Proc Natl Acad Sci U S A, 2006. 103(26): p. 9767-72. 26.Goldfarb, T. and M. Lichten, Frequent and Efficient Use of the Sister Chromatid for DNA Double-Strand Break Repair during Budding Yeast Meiosis. Plos Biology, 2010. 8(10): p. -. 27.Terentyev, Y., et al., Evidence that MEK1 positively promotes interhomologue double-strand break repair. Nucleic Acids Res, 2010. 38(13): p. 4349-60. 28.Vargo, M.A., L. Nguyen, and R.F. Colman, Subunit interface residues of glutathione S-transferase A1-1 that are important in the monomer-dimer equilibrium. Biochemistry, 2004. 43(12): p. 3327-35. 29.Niu, H., et al., Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis. Mol Cell Biol, 2007. 27(15): p. 5456-67. 30.Wu, H.Y., H.C. Ho, and S.M. Burgess, Mek1 kinase governs outcomes of meiotic recombination and the checkpoint response. Curr Biol, 2010. 20(19): p. 1707-16. 31.Keeney, S., Meiosis. Volume 2, cytological methods. Preface. Methods Mol Biol, 2009. 558: p. v-vi. 32.Lai, Y.J., et al., Genetic requirements and meiotic function of phosphorylation of the yeast axial element protein Red1. Mol Cell Biol, 2011. 31(5): p. 912-23. 33.Chen, S.H., M.B. Smolka, and H. Zhou, Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J Biol Chem, 2007. 282(2): p. 986-95. 34.Lee, H., et al., Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell, 2008. 30(6): p. 767-78. 35.Song, J., et al., Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A, 2004. 101(40): p. 14373-8. 36.Schwacha, A. and N. Kleckner, Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell, 1997. 90(6): p. 1123-35.
|