跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何思祈
研究生(外文):Szu-Chi Ho
論文名稱:探討甲基天門冬胺酸受體經由調控酪氨酸磷酸化造成beta-catenin轉移至樹突小刺有關研究
論文名稱(外文):Investigate the NMDAR-dependent β-catenin synaptic translocation via tyrosine phosphorylation
指導教授:戴晶瑩
指導教授(外文):Chin-Yin Tai
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:59
外文關鍵詞:beta-cateninsynapseNMDAtyrosine phosphorylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
經突觸(synapse)位於兩個神經細胞(neuron)的連接處,對於神經傳導扮演重要的角色。N-cadherin為一個位於突觸的細胞黏著因子(cell adhesion molecule),藉由同型親合交互作用(homophilic interaction)來連接突觸前後的神經細胞。N-cadherin 的細胞質部份(cytoplasmic domain)藉由與 β-catenin、α-catenin 的交互作用可與肌動蛋白骨架(Actin cytoskeleton)作連結。在先前的研究指出,當甲基天門冬胺酸受體(N-methyl D-aspartate receptor, NMDAR)被活化時,可能經由一條去駱氨酸磷酸化(tyrosine dephosphorylation)的途徑使得 β-catenin 從樹突分支(dendritic shaft)移往樹突小刺(dendritic spine),並持續的累積。此一累積會調控位於樹突小刺上突觸的大小與受體的總量。已知位於 β-catenin 上第 654 胺基酸的去磷酸化可調控 β-catenin 往突觸小刺的轉位(translocation),然而 NMDAR 活化是否可調控 β-catenin 上其他駱氨酸的磷酸化,進而影響 β-catenin 的轉位還不清楚。
本論文發現 NMDAR 的活化可降低 β-catenin 上第 142 胺基酸的磷酸化。我們將 β-catenin 接上綠螢光蛋白(green fluorescent protein, GFP)並將第 142 胺基酸突變為無法被磷酸化的苯丙胺酸(phenolalanine),大量表現在神經細胞中觀察 β-catenin 的轉位。我們發現,將第 142 胺基酸突變為苯丙胺酸並不會影響 NMDAR 活化所造成的 β-catenin 轉位。然而,當利用 genistein 這個駱胺酸去磷酸酶抑制劑 (tyrosine phosphatase inhibitor) 誘導 β-catenin 轉位時,此突變卻能使 β-catenin 不再繼續累積在樹突小刺,證明 β-catenin 第 142 胺基酸的磷酸化與否對於調控 β-catenin 在神經細胞中的位置扮演重要的角色。
最後,我們藉由免疫螢光染色(immunostaining)觀察內生的(endogenous) β-catenin 在 NMDAR 活化時是否會表現在神經細胞的細胞核。我們發現無論 NMDAR 活化與否,β-catenin 都不會表現在細胞核中,因此我們認為NMDAR 活化造成的 β-catenin 轉位並非由於 β-catenin 進核活化下游基因所導致。

Synapse is a junction that mediating neural transmission between two neurons. N-cadherin is a cell adhesion molecule at synapses. It mediates actin cytoskeleton organization and transsynaptic communication through the interaction with β-catenin and α-catenin. Beta-catenin responds to NMDAR activation and stabilizes N-cadherin at the surface. Previous studies have suggested that NMDAR-dependent neural activity drives β-catenin accumulated in spines possibly through the dephosphorylation of multiple tyrosine residues. Beta-catenin Y654 residue has been found to be one of these sites, however, a few other sites remain to be investigated.
Here, we found that phosphorylation on β-catenin Y142 residue was reduced upon NMDA treatment. By infecting neurons with GFP fusioned β-catenin Y142F, a phosphorylation-prevented mutant, we observed that NMDA-dependent β-catenin spine accumulation was not inhibited by this construct. However, no accumulation of this mutant in the spine was observed in genistein-treated neurons comparing to theβ-catenin WT control group. This result suggests that regulation of phosphorylation on β-catenin Y142 residue is important for β-catenin spine accumulation.
Since β-catenin is known as a coactivator in neuceli, we also examined the subcellular localization of β-catenin by immunostaining to observe whether NMDA can drive β-catenin not only into the spines but also into the nuclei. No endogenous β-catenin was observed in the nuclei upon NMDA treatment, suggesting that NMDA-dependent β-catenin synaptic translocation was not result from activation of its target genes.

誌謝……………………………………….………………………………………..…. I
摘要………………………………………………………..………………………….III
Abstract…...…….…………………….…………………......................………….…IV
Table of contents……………………………………...…………………………….. V
Introduction……………………………………………………………………….…...1
1.1 CNS glutamatergic synapses…………………………………………..……..1
1.2 N-cadherin-catenin adhesion complex……………………………...…...……3
1.3 Structure of beta-catenin ………….………………......................……...……3
1.4 Tyrosine phosphorylation of beta-catenin regulates structure and function of the synapse……………………………………………………………...…….5
Materials and Methods…………………………………………………………...……8
2.1 Cultured neuron………………………………………………………………8
2.2 Mammalian cell cultures……………………………………..………………9
2.3 Plasmids and recombinant DNA techniques……………………..……..……9
2.4 Sindbis virus production……………………………………………………..9
2.5 Viral infection……………………………………………………………....10
2.6 Antibodies………………………………………….……………………….10
2.7 Live-cell imaging………………………………………………………...…11
2.8 Immunoprecipitation………………………………………………………..11
2.9 2D Electrophoresis…………………………………………………...……..12
2.10 Electrophoresis and immunoblotting……………………………………..13
2.11 Synaptosome preparation…………………………………………….……13
2.12 Coomassie blue staining………………………………………………...…14
2.13 Surface biotinylation…………………………………………………...….14
2.14 Immunostaining………………………………………………………..…..15
2.15 Reverse transcription PCR………………………………………………..15
2.16 Image analysis and statistics…………………………………………….16
Results……………………………………………………………………………….17
3.1 NMDA treatment reduced phosphorylation of β-catenin on Y142 residue…17
3.2 Overexpression of β-catenin Y142F does not alter the density of dendritic spines, but increase of spine head width upon NMDA treatment…………...18
3.3 β-catenin Y142F infected neurons exhibited NMDA-dependent β-catenin spine translocation…………………………….……………………………..19
3.4 β-catenin Y142F mutant blocked genistein induced β-catenin spine translocation………………………………………………………………….21
3.5 The amount of surface N-cadherin and membrane-bound β-catenin were not increased by the NMDA and genistein treatment……………………………21
3.6 NMDA treatment does not cause nuclear translocation of β-catenin…….....22
Discussion……………………………………………………………………………24
4.1 The mechanisms involved in the dephosphorylation of β-catenin Y142 by NMDAR activity…………………………………………………………….24
4.2 Dephosphorylation of β-catenin Y142 residue regulates β-catenin spine translocation……………………………………………………………...….25
4.3 NMDAR activity caused spine shape change in β-catenin Y142F overexpressed neurons……………………………………………………….26
4.4 Multiple tyrosine phosphorylation sites of β-catenin………………………..27
4.5 Functions of synaptic β-catenin…………………………………………...…28
4.6 The amount of surface N-cadherin and membrane-bound β-catenin were not increased by the NMDA and genistein treatment……………………………28
4.7 NMDA-dependent β-catenin synaptic translocation was an independent pathway from activating the genes downstream of β-catenin……….………29
Reference……………………………………………………………………………..30
Figures…………………………………………………………………………..……37
Figure 1. Adhesion molecules of cadhrin/catenin complex……………………..37
Figure 2. Multiple β-catenin tyrosine phosphorylation sites that regulated by tyrosine kinases or phosphatases……………………………………….39
Figure 3. Tyrosine phosphorylation on β-catenin Y142 residue was reduced in the NMDA-treated neuron…………………………………………….…...40
Figure 4. The spine density was not altered in the β-catenin Y142F overexpressed neurons, but the stubby and mushroom spines were increased after NMDA treatment……..…………………………………………….….43
Figure 5. NMDAR activity caused increase of synaptic β-catenin………..……46
Figure 6. NMDA induces β-catenin translocation to spines…………………….48
Figure 7. β-catenin Y142 infected neurons inhibit genistein-induced β-catenin translocation……………………………………………………………50
Figure 8. Surface N-cadherin and membrane-bound β-catenin were not increased upon NMDA or genistein treatment……………………………………52
Figure 9. β-catenin was not in the nuclei upon NMDA or LiCl treatment in the mature hippocampal neurons…………………..………………………55
Tables………………………………………………………………………………...58
Table 1. Primers for site-directed mutagenesis……………………………………….58
Table 2. Primers for checking the sequence………………………………………….58
Table 3. Plasmid list……………………………………………………………...…..59

Abe, K., Chisaka, O., Van Roy, F., and Takeichi, M. (2004). Stability of dendritic spines and synaptic contacts is controlled by alpha N-catenin. Nat Neurosci 7, 357-363.
Ackermann, M., and Matus, A. (2003). Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 6, 1194-1200.
Aiga, M., Levinson, J.N., and Bamji, S.X. (2011). N-cadherin and neuroligins cooperate to regulate synapse formation in hippocampal cultures. J Biol Chem 286, 851-858.
Amit, S., Hatzubai, A., Birman, Y., Andersen, J.S., Ben-Shushan, E., Mann, M., Ben-Neriah, Y., and Alkalay, I. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16, 1066-1076.
Arikkath, J., and Reichardt, L.F. (2008). Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 31, 487-494.
Bamji, S.X., Rico, B., Kimes, N., and Reichardt, L.F. (2006). BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. J Cell Biol 174, 289-299.
Bamji, S.X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., and Reichardt, L.F. (2003). Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719-731.
Behrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638-642.
Benson, D.L., and Tanaka, H. (1998). N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci 18, 6892-6904.
Bourne, J., and Harris, K.M. (2007). Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17, 381-386.
Brigidi, G.S., and Bamji, S.X. (2011). Cadherin-catenin adhesion complexes at the synapse. Curr Opin Neurobiol.
Castano, J., Raurell, I., Piedra, J.A., Miravet, S., Dunach, M., and Garcia de Herreros, A. (2002). Beta-catenin N- and C-terminal tails modulate the coordinated binding of adherens junction proteins to beta-catenin. J Biol Chem 277, 31541-31550.
Chen, J., Park, C.S., and Tang, S.J. (2006). Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281, 11910-11916.
Ciani, L., and Salinas, P.C. (2005). WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6, 351-362.
Coluccia, A.M., Vacca, A., Dunach, M., Mologni, L., Redaelli, S., Bustos, V.H., Benati, D., Pinna, L.A., and Gambacorti-Passerini, C. (2007). Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. Embo J 26, 1456-1466.
Dalva, M.B., McClelland, A.C., and Kayser, M.S. (2007). Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8, 206-220.
Daugherty, R.L., and Gottardi, C.J. (2007). Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 22, 303-309.
David, M.D., Yeramian, A., Dunach, M., Llovera, M., Canti, C., de Herreros, A.G., Comella, J.X., and Herreros, J. (2008). Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J Cell Sci 121, 2718-2730.
Drees, F., Pokutta, S., Yamada, S., Nelson, W.J., and Weis, W.I. (2005). Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123, 903-915.
Dunah, A.W., Hueske, E., Wyszynski, M., Hoogenraad, C.C., Jaworski, J., Pak, D.T., Simonetta, A., Liu, G., and Sheng, M. (2005). LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat Neurosci 8, 458-467.
Elia, L.P., Yamamoto, M., Zang, K., and Reichardt, L.F. (2006). p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins. Neuron 51, 43-56.
Fannon, A.M., and Colman, D.R. (1996). A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423-434.
Fiala, J.C., Spacek, J., and Harris, K.M. (2002). Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39, 29-54.
Gottardi, C.J., and Gumbiner, B.M. (2004). Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167, 339-349.
Hart, M., Concordet, J.P., Lassot, I., Albert, I., del los Santos, R., Durand, H., Perret, C., Rubinfeld, B., Margottin, F., Benarous, R., et al. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9, 207-210.
He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512.
Huber, A.H., Nelson, W.J., and Weis, W.I. (1997). Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90, 871-882.
Huber, A.H., and Weis, W.I. (2001). The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105, 391-402.
Irwin, S.A., Idupulapati, M., Gilbert, M.E., Harris, J.B., Chakravarti, A.B., Rogers, E.J., Crisostomo, R.A., Larsen, B.P., Mehta, A., Alcantara, C.J., et al. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111, 140-146.
Ishiyama, N., Lee, S.H., Liu, S., Li, G.Y., Smith, M.J., Reichardt, L.F., and Ikura, M. (2010). Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141, 117-128.
Kapitein, L.C., Yau, K.W., Gouveia, S.M., van der Zwan, W.A., Wulf, P.S., Keijzer, N., Demmers, J., Jaworski, J., Akhmanova, A., and Hoogenraad, C.C. (2011). NMDA Receptor Activation Suppresses Microtubule Growth and Spine Entry. J Neurosci 31, 8194-8209.
Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., and Nakahara, H. (2003). Structure-stability-function relationships of dendritic spines. Trends Neurosci 26, 360-368.
Lee, S.H., Peng, I.F., Ng, Y.G., Yanagisawa, M., Bamji, S.X., Elia, L.P., Balsamo, J., Lilien, J., Anastasiadis, P.Z., Ullian, E.M., et al. (2008). Synapses are regulated by the cytoplasmic tyrosine kinase Fer in a pathway mediated by p120catenin, Fer, SHP-2, and beta-catenin. J Cell Biol 183, 893-908.
Lilien, J., and Balsamo, J. (2005). The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 17, 459-465.
Martinez, M.C., Ochiishi, T., Majewski, M., and Kosik, K.S. (2003). Dual regulation of neuronal morphogenesis by a delta-catenin-cortactin complex and Rho. J Cell Biol 162, 99-111.
Matsuzaki, M., Honkura, N., Ellis-Davies, G.C., and Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761-766.
Mendez, P., De Roo, M., Poglia, L., Klauser, P., and Muller, D. (2010). N-cadherin mediates plasticity-induced long-term spine stabilization. J Cell Biol 189, 589-600.
Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., Roose, J., Destree, O., and Clevers, H. (1996). XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391-399.
Murase, S., Mosser, E., and Schuman, E.M. (2002). Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91-105.
Nagafuchi, A., Takeichi, M., and Tsukita, S. (1991). The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell 65, 849-857.
Nishimura, W., Yao, I., Iida, J., Tanaka, N., and Hata, Y. (2002). Interaction of synaptic scaffolding molecule and Beta -catenin. J Neurosci 22, 757-765.
Okuda, T., Yu, L.M., Cingolani, L.A., Kemler, R., and Goda, Y. (2007). beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc Natl Acad Sci U S A 104, 13479-13484.
Palka-Hamblin, H.L., Gierut, J.J., Bie, W., Brauer, P.M., Zheng, Y., Asara, J.M., and Tyner, A.L. (2010). Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6. J Cell Sci 123, 236-245.
Piedra, J., Miravet, S., Castano, J., Palmer, H.G., Heisterkamp, N., Garcia de Herreros, A., and Dunach, M. (2003). p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol 23, 2287-2297.
Rhee, J., Buchan, T., Zukerberg, L., Lilien, J., and Balsamo, J. (2007). Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 9, 883-892.
Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., and Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997.
Roura, S., Miravet, S., Piedra, J., Garcia de Herreros, A., and Dunach, M. (1999). Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274, 36734-36740.
Shapiro, L., and Weis, W.I. (2009). Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1, a003053.
Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R., and Ben-Ze'ev, A. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96, 5522-5527.
Solanas, G., Miravet, S., Casagolda, D., Castano, J., Raurell, I., Corrionero, A., de Herreros, A.G., and Dunach, M. (2004). beta-Catenin and plakoglobin N- and C-tails determine ligand specificity. J Biol Chem 279, 49849-49856.
Stan, A., Pielarski, K.N., Brigadski, T., Wittenmayer, N., Fedorchenko, O., Gohla, A., Lessmann, V., Dresbach, T., and Gottmann, K. (2010). Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proc Natl Acad Sci U S A 107, 11116-11121.
Sun, Y., Aiga, M., Yoshida, E., Humbert, P.O., and Bamji, S.X. (2009). Scribble interacts with beta-catenin to localize synaptic vesicles to synapses. Mol Biol Cell 20, 3390-3400.
Tada, T., and Sheng, M. (2006). Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16, 95-101.
Tai, C.Y., Kim, S.A., and Schuman, E.M. (2008). Cadherins and synaptic plasticity. Curr Opin Cell Biol 20, 567-575.
Tai, C.Y., Mysore, S.P., Chiu, C., and Schuman, E.M. (2007). Activity-regulated N-cadherin endocytosis. Neuron 54, 771-785.
Tashiro, A., and Yuste, R. (2004). Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26, 429-440.
Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O., and Takeichi, M. (2002). Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77-89.
von Bohlen Und Halbach, O. (2009). Structure and function of dendritic spines within the hippocampus. Ann Anat 191, 518-531.
Wearne, S.L., Rodriguez, A., Ehlenberger, D.B., Rocher, A.B., Henderson, S.C., and Hof, P.R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience 136, 661-680.
Xie, Z., Photowala, H., Cahill, M.E., Srivastava, D.P., Woolfrey, K.M., Shum, C.Y., Huganir, R.L., and Penzes, P. (2008). Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7. J Neurosci 28, 6079-6091.
Yamada, S., Pokutta, S., Drees, F., Weis, W.I., and Nelson, W.J. (2005). Deconstructing the cadherin-catenin-actin complex. Cell 123, 889-901.
Zhou, Q., Homma, K.J., and Poo, M.M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749-757.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top