跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:08
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:林遠達
Author (Eng.):Yuan-Ta Lin
Title:探討幹細胞在治療漢丁頓舞蹈症之應用
Title (Eng.):Therapeutic potential of the stem cells in Huntington’s disease mouse models
Advisor:李鴻李鴻 author reflink謝秀梅謝秀梅 author reflink鄭子豪
advisor (eng):Hung LiHsiu Mei Hsieh-LiTzu-Hao Cheng
degree:Ph.D
Institution:國立陽明大學
Department:生化暨分子生物研究所
Narrow Field:生命科學學門
Detailed Field:生物化學學類
Types of papers:Academic thesis/ dissertation
Publication Year:2011
Graduated Academic Year:99
language:English
number of pages:138
keyword (chi):間質幹細胞移植漢丁頓舞蹈症
keyword (eng):Mesenchymal stem cellsTransplantationHuntington’s disease
Ncl record status:
  • Cited Cited :0
  • HitsHits:321
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:8
  • gshot_favorites title msgFav:0
本研究主要是探討幹細胞相關治療或生物性指標應用於治療漢丁頓舞蹈症 (HD)可能性,我們首先評估以人類骨髓間質幹細胞 (hBM-MSCs) 應用於治療HD小鼠模式的效果。以喹啉酸 (quinolinic acid, QA) 引發的HD小鼠,以hBM-MSCs移殖十週後,HD小鼠的運動能力與存活率均獲得顯著地改善。實驗也證明移殖的hBM-MSCs可以在小鼠腦部紋狀體 (striatum) 內存活並引發神經增生與分化,並誘使microglia、neuroblast以及骨髓內的細胞移動至受到QA損傷的腦部區域附近。另外在基因轉殖HD小鼠品系R6/2-J2作同樣的處理亦可得到相似的結果,但行為並沒有具體改善,而且移殖的hBM-MSCs細胞可嵌入 (integrate) 宿主細胞,並促進laminin、VWF、SDF-1、Cxcr4表現量增加。由近一步之研究結果推論,此治療可能藉由增加p-Erk1/2表現量和減少Bax與caspase-3表現量減緩細胞凋亡 (apoptosis) 而達到改善神經分化、分泌神經支持性 (neurotrophic support) 物質與對抗細胞凋亡的能力,此治療具有可能應用於HD的潛力。
另一方面,我們試著找尋可以診斷HD的幹細胞相關生物性指標 (biomarker),發現在HD患者血液中一些幹細胞相關因子,如CD133與CD34表現量都較同次實驗中正常人高。在HD基因轉殖小鼠骨髓中,Flt3+/CD34- 與MPP細胞族群比例均較正常鼠高,轉殖鼠血液中白血球、紅血球與血小板相關參數亦與正常小鼠有顯著地差異,然而我們的CFC實驗結果卻發現骨髓中造血幹細胞數目並無差異。這些研究結果之落差仍有待近一步探討。
最後,G-CSF可誘發紺細胞分化之能力已研究很清楚,我們於是評估G-CSF應用在HD治療之可能性。我們的結果顯示G-CSF治療並無法延長HD小鼠壽命,但在運動能力與行為測試實驗中,包括十字迷宮與平衡木測試結果均證明G-CSF具有稍微改善小鼠行為表現之效果。
綜合我們各項研究結果,hBM-MSCs與G-CSF均有潛力應用於HD治療,雖然幹細胞相關生物性指標之研究尚待探討,未來幹細胞相關治療與應用仍有機會於HD臨床治療扮演重要角色。

In this study, we investigated whether stem cell-related treatments or biomarkers were potential in Huntington’s disease (HD) therapeutic application. We first evaluated the therapeutic potential of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in Huntington’s disease (HD) mouse models. Ten weeks after intrastriatal injection of quinolinic acid (QA), mice that received hBM-MSC transplantation showed a significant reduction in motor function impairment and increased survival rate. Transplanted hBM-MSCs were capable of survival, and inducing neural proliferation and differentiation in the QA-lesioned striatum. In addition, the transplanted hBM-MSCs induced microglia, neuroblasts and bone marrow-derived cells to migrate into the QA-lesioned region. Similar results were obtained in R6/2-J2, a genetically-modified animal model of HD, except for the improvement of motor function. After hBM-MSC transplantation, the transplanted hBM-MSCs may integrate with the host cells and increase the levels of laminin, Von Willebrand Factor (VWF), stromal cell-derived factor-1 (SDF-1), and the SDF-1 receptor Cxcr4. The p-Erk1/2 expression was increased while Bax and caspase-3 levels were decreased after hBM-MSC transplantation suggesting that the reduced level of apoptosis after hBM-MSC transplantation was of benefit to the QA-lesioned mice. Our data suggest that hBM-MSCs have neural differentiation improvement potential, neurotrophic support capability and an anti-apoptotic effect, and may be a feasible candidate for HD therapy.
On the other hand, we tried to identify the candidate stem cell-related biomarkers for HD diagnosis. We found some stem cell markers were higher in HD patients compared to health persons, including CD133 and CD34. The hematopoietic stem / progenitor cells (HSPC) in HD mice were different from their wild-type control littermates. The populations of Flt3+/CD34- and MPP were higher in the bone marrow of HD mice. Some parameters of leukocyte, erythrocyte, and thrombocyte were found different from wild-type mice although the quantification of hematopoietic progenitors by colony-forming cell (CFC) assay showed no difference between them. Further investigation needs to be conducted to elucidate the inconsistence between these studies.
Finally, the stem cell differentiation-iduction effect of G-CSF has been well studied, therefore we evaluated the therapeutic potential of granulocyte-colony stimulating factor (G-CSF) in HD. Our results show that G-CSF treatment could not prolong the lifespan of HD mice.However, we found G-CSF treatment could slightly improve motor function and behavior of HD mice in elevated plus maze (EPM) and beam test. Modification of G-CSF therapeutic protocol in dosage and frequency may help to obtain a more effective treatment for HD.
According to our studies, hBM-MSC transplantation and G-CSF treatment are possible potential candidates for HD therapy. Although investigation about identify the candidate stem cell-related biomarkers for HD needs to be evaluated, stem cell-related therapy still has chance apply in clinical therapy of HD.

Chinese Abstrate…………………….……………..…………………………………i
English Abstrate…………………………………...………………………………...iii
Contents…………………………………...……………………………………….....v
List of Figures………………………………..……………….……………………viii
List of Tables…………………………………………………...…………...………...x
Abbreviation List……………………………………………………………………xi
Chapter 1 Introduction ……………………………………………………………...1
1.1 Huntington’s disease (HD)…………………………………………………...….1
1.2 Cell transplantation therapy for HD……………………………………………1
1.3 Biomarker candidates for HD…………………………………………………...2
1.4 Granulocyte-colony stimulating factor (G-CSF).................................................4
1.5 Research rationale………………………………..………………………...……5
Chapter 2 Materials and Methods…………………………………………………..6
Chapter 3 Results………………………………………………………………...…15
3.1 Therapeutic potential of hBM-MSC transplantation in HD…………...……15
3.1.1 hBM-MSCs may differentiate and survive in C57/B6 mice………….……15
3.1.2 hBM-MSCs do not cause tumorigenesis………...……………..………......15
3.1.3 hBM-MSC transplantation improves striatum volume after QA-induced excitotoxicity…………………………………………...….………..….…..16
3.1.4 hBM-MSC transplantation improves rotarod Pperformance and survival rates after QA-induced excitotoxicity……….………………….....…….…16
3.1.5 hBM-MSCs improve cell proliferation after transplantation in QA-lesioned mice..………………………………………………………………….……17
3.1.6 hBM-MSCs Iimprove cell differentiation after transplantation in QA-lesioned mice……………………………………………………...…..17
3.1.7 hBM-MSCs sustained for sixteen weeks after transplantation in QA-lesioned mice………………………………………...………….…….18
3.1.8 hBM-MSCs improve survival rates after transplantation into R6/2-J2 HD mice…………………..……………………………………………..…..…18
3.1.9 hBM-MSCs induce cell differentiation after transplantation into R6/2-J2 HD mice……………………..………………………………………..….…….19
3.1.10 Transplanted hBM-MSCs play a trophic role in the HD mouse model…………..…………………………………....………………...……20
3.1.11 hBM-MSC transplantation induces migration of neuroblast cells in HD mouse models...........................................................................................…20
3.1.12 Transplanted hBM-MSCs might integrate with host cells in HD mouse models…………………..……………………………………….…...…….21
3.1.13 Transplanted hBM-MSCs improve angiogenic activity in the damaged striatal region of HD mouse models……………………………..……...…22
3.1.14 Transplanted hBM-MSCs improve chemotactic activity in the damaged Striatal region in HD mouse models………………...……………..…...…22
3.1.15 Transplanted hBM-MSCs reduce apoptosis after transplantation in QA-lesioned mice……………….……………………………….....….….24
3.2 Biomarker candidates for HD………………………………………………….25
3.2.1 Hematopoietic stem / progenitor cell (HSPC) expression distribution were distinct in human peripheral bloods……………………………….…..…...25
3.2.2 Hematopoietic stem / progenitor cell (HSPC) expression pattern were different between wild-type and HD mice………………………............…26
3.2.3 Complete bood count (CBC) sata were altered in R6/2 mouse model…….27
3.2.4 Colony-forming cell (CFC) numbers were unaffected in R6/2 mouse model……………………………………………………..………...……...28
3.3 Therapeutic potential of G-CSF treatment in HD…………………….……...28
3.3.1 The lifespan of R6/2-J2 mice was not prolonged by G-CSF treatment.…...28
3.3.2 G-CSF treatment could not improve the motor function of R6/2-J2 mice...29
3.3.3 G-CSF treatment altered the behavior of R6/2-J2 mice…………………....30
3.3.4 G-CSF treatment did not affect the bodyweight of R6/2 mice………....….31
3.3.5 G-CSF treatment improved the motor function of R6/2 mice……………..31
3.3.6 G-CSF treatment altered the behavior of R6/2 mice……………….……...32
Chapter 4 Discussion……………………………………….…………………..…..34
4.1 Therapeutic potential of hBM-MSC transplantation in HD….......................34
4.1.1 Summary…….……...……………………………………………………...34
4.1.2 Application of mesenchymal stem cells in HD mouse models………..…...34
4.1.3 The role of gliosis after hBM-MSC transplantation.....................................36
4.1.4 The role of intrinsic stem cells after hBM-MSC transplantation………..…36
4.1.5 hBM-MSC transplantation induces angiogenesis and offers neurotrophic support………………..……………………………………………………37
4.1.6 hBM-MSC transplantation alleviates apoptosis……………………………38
4.1.7 hBM-MSC transplantation has potential in HD therapeutic application…..39
4.2 Biomarker candidates for HD……………………………………………….…39
4.2.1 Summary…..………………………………………………………………39
4.2.2 The role of HSCs……………………………………………………….…40
4.3 Therapeutic potential of G-CSF treatment in HD……………………………41
4.3.1 Summary……………………………………………………………….….41
4.3.2 The possible anti-inflammation role of G-CSF in HD………………….42
4.3.3 G-CSF may alter hematopoiesis in HD………………………………….43
4.3.4 Behavior characteristics of R6/2 mice………………………………...…44
Chapter 5 Conclusion and Future Perspectives…………..………………………46
References...................................................................................................................48

List of Figures
Figure 1. Transplanted hBM-MSCs differentiated and survived in wild-type C57/B6 mice………………………………………………….…………………..60
Figure 2. Transplanted hBM-MSCs improved striatal volumes in QA-lesioned mice…………………………………………….………………………..62
Figure 3. Transplanted hBM-MSCs improved motor function and survival rates of QA-lesioned mice..…………………………………….………………..64
Figure 4. Transplanted hBM-MSCs improved cell proliferation in QA-lesioned mice..………………………………………….…………………………66
Figure 5. Transplanted hBM-MSCs improved cell differentiation in QA-lesioned mice..…………………………………….………………………………68
Figure 6. Transplanted hBM-MSCs were alive in QA-lesioned mice..……………..70
Figure 7. Transplanted hBM-MSCs improved animal survival rate in R6/2-J2 mice…………………………………………….………………………..72
Figure 8. Transplanted hBM-MSCs induce cell differentiation in R6/2-J2 mice…...74
Figure 9. Bone marrow replacement mice expressed GFP-positive cells in the peripheral blood……………………………………………..…………...76
Figure 10. Transplanted hBM-MSCs attract GFP-positive cells migration into the striatum..……………………………………………………..…………..78
Figure 11. Transplanted hBM-MSCs attract neuroblast cells migration into the striatum.……….........................................................................................80
Figure 12. hBM-MSCs integrated with host cells in QA-lesioned mice.…………...82
Figure 13. hBM-MSCs improved angiogenic activity in QA-lesioned mice…….....84
Figure 14. hBM-MSCs improved chemotactic activity in QA-lesioned mice……...86
Figure 15. Gene expression levels after transplantation were assessed by qRT-PCR.…………………………………………….………………….88
Figure 16. hBM-MSCs reduced apoptosis in QA-lesioned mice.…………………..90
Figure 17. hBM-MSCs reduced apoptosis may through Erk and Bax pathways in QA-lesioned mice.…………………………………..…………………...92
Figure 18. Gene expression levels after transplantation were assessed by western blot.…………………………………………………..…………………..94
Figure 19.. Quantification of hematopoietic stem cells (HSCs) in human peripheral bloods………………………………………………..…………………...96
Figure 20. The LSK cell population in HD mouse models………………………….98
Figure 21. The HSPC in the bone marrow of HD mouse models.…………………100
Figure 22. The expression of HSPC in the peripheral bloods of R6/2 mice……….102
Figure 23. Results of CBC analysis with leukocyte related parameters from the peripheral bloods of R6/2 mice.……………………………………......104
Figure 24. Results of CBC analysis with erythrocyte related parameters from the peripheral bloods of R6/2 mice……………………………………...…106
Figure 25. Results of CBC analysis with thrombocyte related parameters from the peripheral bloods of R6/2 mice.……………………………………......108
Figure 26. Results of CFC assay from the bone marrow of HD mouse models…...110
Figure 27. The lifespan was not prolonged after G-CSF treatment in R6/2-J2 mice112
Figure 28. G-CSF treatment did not improve motor function of R6/2-J2 mice……114
Figure 29. The elevated plus maze (EPM) results of R6/2-J2 mice………………..116
Figure 30. The locomoter activity results of R6/2-J2 mice.………………………..118
Figure 31. G-CSF did not affect bodyweight of R6/2 mice.………….……..……..120
Figure 32. G-CSF treatment improved motor function of R6/2 mice.……………..122
Figure 33. The elevated plus maze (EPM) results of R6/2 mice.……………….....124
Figure 34. The locomoter activity results of R6/2 mice.………………………......126
Figure 35. The balance beam test results of R6/2 mice.……………...……………128
Figure 36. Summary of possible mechanisms by which hBM-MSCs may alleviate cell damage……………………………………………..………………130

List of Tables
Table 1 Antibodies used in immunofluorescence and Western blot………………..132
Table 2. Primer sequences used in qRT-PCR experiments………………...………133
Table 3 Antibodies used in FACS…………………………………...……………..134
Table 4 The state of leukocyte related parameters from R6/2 mice………………..135
Table 5 The state of erythrocyte related parameters R6/2 mice……………………136
Table 6 The state of thrombocyte related parameters from R6/2 mice………...…..137

1. Kremer B, Goldberg P, Andrew SE, Theilmann J, Telenius H, et al. (1994) A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330: 1401-1406.
2. Rubinsztein DC, Amos W, Leggo J, Goodburn S, Ramesar RS, et al. (1994) Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat Genet 7: 525-530.
3. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, et al. (1985) Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 44: 559-577.
4. Ramaswamy S, Shannon KM, Kordower JH (2007) Huntington's disease: pathological mechanisms and therapeutic strategies. Cell Transplant 16: 301-312.
5. Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, et al. (2000) Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 356: 1975-1979.
6. Keene CD, Sonnen JA, Swanson PD, Kopyov O, Leverenz JB, et al. (2007) Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology 68: 2093-2098.
7. Bjorklund A (1993) Neurobiology. Better cells for brain repair. Nature 362: 414-415.
8. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, et al. (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137: 393-399.
9. Prockop DJ, Azizi SA, Colter D, Digirolamo C, Kopen G, et al. (2000) Potential use of stem cells from bone marrow to repair the extracellular matrix and the central nervous system. Biochem Soc Trans 28: 341-345.
10. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, et al. (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113: 1701-1710.
11. Jin HK, Carter JE, Huntley GW, Schuchman EH (2002) Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest 109: 1183-1191.
12. Torrente Y, Polli E (2008) Mesenchymal stem cell transplantation for neurodegenerative diseases. Cell Transplant 17: 1103-1113.
13. Shyu WC, Lin SZ, Chiang MF, Su CY, Li H (2006) Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci 26: 3444-3453.
14. Snyder BR, Chiu AM, Prockop DJ, Chan AW (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease. PLoS One 5: e9347.
15. Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington's disease. Lancet Neurol 10: 573-590.
16. Prvulovic D, Bokde AL, Faltraco F, Hampel H (2011) Functional magnetic resonance imaging as a dynamic candidate biomarker for Alzheimer's disease. Prog Neurobiol.
17. Vanmierlo T, Popp J, Kolsch H, Friedrichs S, Jessen F, et al. (2011) The plant sterol brassicasterol as additional CSF biomarker in Alzheimer's disease. Acta Psychiatr Scand.
18. Chen KD, Chang PT, Ping YH, Lee HC, Yeh CW, et al. (2011) Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer's disease. Neurobiol Dis 43: 698-705.
19. Bjorkqvist M, Petersen A, Bacos K, Isaacs J, Norlen P, et al. (2006) Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington's disease. Hum Mol Genet 15: 1713-1721.
20. Leblhuber F, Walli J, Jellinger K, Tilz GP, Widner B, et al. (1998) Activated immune system in patients with Huntington's disease. Clin Chem Lab Med 36: 747-750.
21. Huntington Study Group. (1996) Unified Huntington's Disease Rating Scale: reliability and consistency. Mov Disord 11: 136-142.
22. Henley SM, Bates GP, Tabrizi SJ (2005) Biomarkers for neurodegenerative diseases. Curr Opin Neurol 18: 698-705.
23. Fang Q, Strand A, Law W, Faca VM, Fitzgibbon MP, et al. (2009) Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteomics 8: 451-466.
24. Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, et al. (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 66: 250-252.
25. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2008) Low plasma total cholesterol in patients with Huntington's disease and first-degree relatives. Mol Genet Metab 93: 341-346.
26. Reilmann R, Rolf LH, Lange HW (1994) Huntington's disease: the neuroexcitotoxin aspartate is increased in platelets and decreased in plasma. J Neurol Sci 127: 48-53.
27. Battista N, Bari M, Tarditi A, Mariotti C, Bachoud-Levi AC, et al. (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiol Dis 27: 108-116.
28. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, et al. (1995) Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85: 1655-1658.
29. Carlsson G, Ahlin A, Dahllof G, Elinder G, Henter JI, et al. (2004) Efficacy and safety of two different rG-CSF preparations in the treatment of patients with severe congenital neutropenia. Br J Haematol 126: 127-132.
30. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, et al. (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115: 2083-2098.
31. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, et al. (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110: 1847-1854.
32. Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, et al. (2006) Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 113: 701-710.
33. Boneberg EM, Hareng L, Gantner F, Wendel A, Hartung T (2000) Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95: 270-276.
34. Zhao LR, Navalitloha Y, Singhal S, Mehta J, Piao CS, et al. (2007) Hematopoietic growth factors pass through the blood-brain barrier in intact rats. Exp Neurol 204: 569-573.
35. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, et al. (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34: 745-751.
36. Cao XQ, Arai H, Ren YR, Oizumi H, Zhang N, et al. (2006) Recombinant human granulocyte colony-stimulating factor protects against MPTP-induced dopaminergic cell death in mice by altering Bcl-2/Bax expression levels. J Neurochem 99: 861-867.
37. Pitzer C, Kruger C, Plaas C, Kirsch F, Dittgen T, et al. (2008) Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis. Brain 131: 3335-3347.
38. Solaroglu I, Tsubokawa T, Cahill J, Zhang JH (2006) Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience 143: 965-974.
39. Kastrup J, Ripa RS, Wang Y, Jorgensen E (2006) Myocardial regeneration induced by granulocyte-colony-stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: a non-invasive alternative for clinical stem cell therapy? Eur Heart J 27: 2748-2754.
40. Tsai KJ, Tsai YC, Shen CK (2007) G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J Exp Med 204: 1273-1280.
41. Yamasaki R, Tanaka M, Fukunaga M, Tateishi T, Kikuchi H, et al. (2010) Restoration of microglial function by granulocyte-colony stimulating factor in ALS model mice. J Neuroimmunol 229: 51-62.
42. Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, et al. (2007) Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol 66: 724-731.
43. Henriques A, Pitzer C, Dupuis L, Schneider A (2010) G-CSF protects motoneurons against axotomy-induced apoptotic death in neonatal mice. BMC Neurosci 11: 25.
44. Lee ST, Chu K, Jung KH, Im WS, Park JE, et al. (2009) Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol 66: 671-681.
45. Lee ST, Chu K, Park JE, Hong NH, Im WS, et al. (2008) Atorvastatin attenuates mitochondrial toxin-induced striatal degeneration, with decreasing iNOS/c-Jun levels and activating ERK/Akt pathways. J Neurochem 104: 1190-1200.
46. Jeong SW, Chu K, Jung KH, Kim SU, Kim M, et al. (2003) Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke 34: 2258-2263.
47. Shyu WC, Liu DD, Lin SZ, Li WW, Su CY, et al. (2008) Implantation of olfactory ensheathing cells promotes neuroplasticity in murine models of stroke. J Clin Invest 118: 2482-2495.
48. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102: 18171-18176.
49. Chindewa R, Lapanantasin S, Sanvarinda Y, Chongthammakun S (2008) Pueraria mirifica, phytoestrogen-induced change in synaptophysin expression via estrogen receptor in rat hippocampal neuron. J Med Assoc Thai 91: 208-214.
50. Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, et al. (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29: 1409-1420.
51. Zand L, Ryu JK, McLarnon JG (2005) Induction of angiogenesis in the beta-amyloid peptide-injected rat hippocampus. Neuroreport 16: 129-132.
52. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, et al. (2003) CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23: 5123-5130.
53. Yanagawa Y, Iwabuchi K, Onoe K (2001) Enhancement of stromal cell-derived factor-1alpha-induced chemotaxis for CD4/8 double-positive thymocytes by fibronectin and laminin in mice. Immunology 104: 43-49.
54. Hernandez-Lopez C, Valencia J, Hidalgo L, Martinez VG, Zapata AG, et al. (2008) CXCL12/CXCR4 signaling promotes human thymic dendritic cell survival regulating the Bcl-2/Bax ratio. Immunol Lett 120: 72-78.
55. Kollmar O, Rupertus K, Scheuer C, Junker B, Tilton B, et al. (2007) Stromal cell-derived factor-1 promotes cell migration and tumor growth of colorectal metastasis. Neoplasia 9: 862-870.
56. Wendt MK, Drury LJ, Vongsa RA, Dwinell MB (2008) Constitutive CXCL12 expression induces anoikis in colorectal carcinoma cells. Gastroenterology 135: 508-517.
57. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
58. Lescaudron L, Unni D, Dunbar GL (2003) Autologous adult bone marrow stem cell transplantation in an animal model of huntington's disease: behavioral and morphological outcomes. Int J Neurosci 113: 945-956.
59. Alberti E, Los M, Garcia R, Fraga JL, Serrano T, et al. (2009) Prolonged survival and expression of neural markers by bone marrow-derived stem cells transplanted into brain lesions. Med Sci Monit 15: BR47-54.
60. Sadan O, Shemesh N, Barzilay R, Bahat-Stromza M, Melamed E, et al. (2008) Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells 26: 2542-2551.
61. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739-2749.
62. Amin EM, Reza BA, Morteza BR, Maryam MM, Ali M, et al. (2008) Microanatomical evidences for potential of mesenchymal stem cells in amelioration of striatal degeneration. Neurol Res 30: 1086-1090.
63. Edalatmanesh MA, Matin MM, Neshati Z, Bahrami AR, Kheirabadi M Systemic transplantation of mesenchymal stem cells can reduce cognitive and motor deficits in rats with unilateral lesions of the neostriatum. Neurol Res 32: 166-172.
64. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res 214: 193-200.
65. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res 155: 62-70.
66. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, et al. (1986) Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168-171.
67. Sanberg PR, Coyle JT (1984) Scientific approaches to Huntington's disease. CRC Crit Rev Clin Neurobiol 1: 1-44.
68. McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, et al. (2004) Human neural stem cell transplants improve motor function in a rat model of Huntington's disease. J Comp Neurol 475: 211-219.
69. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, et al. (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res 214: 193-200.
70. Dusart I, Marty S, Peschanski M (1991) Glial changes following an excitotoxic lesion in the CNS--II. Astrocytes. Neuroscience 45: 541-549.
71. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, et al. (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171: 1001-1012.
72. Acarin L, Gonzalez B, Castellano B (2000) Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 12: 3505-3520.
73. Marco S, Canudas AM, Canals JM, Gavalda N, Perez-Navarro E, et al. (2002) Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol 174: 243-252.
74. Strauss S, Otten U, Joggerst B, Pluss K, Volk B (1994) Increased levels of nerve growth factor (NGF) protein and mRNA and reactive gliosis following kainic acid injection into the rat striatum. Neurosci Lett 168: 193-196.
75. Li WY, Choi YJ, Lee PH, Huh K, Kang YM, et al. (2008) Mesenchymal stem cells for ischemic stroke: changes in effects after ex vivo culturing. Cell Transplant 17: 1045-1059.
76. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, et al. (2004) Striatal neural grafting improves cortical metabolism in Huntington's disease patients. Brain 127: 65-72.
77. Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, et al. (2002) Bilateral human fetal striatal transplantation in Huntington's disease. Neurology 58: 687-695.
78. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8: 963-970.
79. Goings GE, Sahni V, Szele FG (2004) Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res 996: 213-226.
80. Lazic SE, Grote HE, Blakemore C, Hannan AJ, van Dellen A, et al. (2006) Neurogenesis in the R6/1 transgenic mouse model of Huntington's disease: effects of environmental enrichment. Eur J Neurosci 23: 1829-1838.
81. Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, et al. (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiol Dis 20: 744-751.
82. Zhou FC (1990) Four patterns of laminin-immunoreactive structure in developing rat brain. Brain Res Dev Brain Res 55: 191-201.
83. Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170-188.
84. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116: 769-778.
85. Wu J, Sun Z, Sun HS, Weisel RD, Keating A, et al. (2008) Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant 16: 993-1005.
86. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA (2009) Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant 18: 371-380.
87. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, et al. (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104: 1046-1052.
88. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26: 13007-13016.
89. Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, et al. (2007) Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 25: 903-910.
90. Tanabe S, Heesen M, Yoshizawa I, Berman MA, Luo Y, et al. (1997) Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol 159: 905-911.
91. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24: 739-747.
92. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, et al. (2006) Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab 26: 125-134.
93. Dasari VR, Spomar DG, Cady C, Gujrati M, Rao JS, et al. (2007) Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats. Neurochem Res 32: 2080-2093.
94. Emerich DF, Thanos CG, Goddard M, Skinner SJ, Geany MS, et al. (2006) Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis 23: 471-480.
95. Kordower JH, Chen EY, Winkler C, Fricker R, Charles V, et al. (1997) Grafts of EGF-responsive neural stem cells derived from GFAP-hNGF transgenic mice: trophic and tropic effects in a rodent model of Huntington's disease. J Comp Neurol 387: 96-113.
96. Krystkowiak P, Gaura V, Labalette M, Rialland A, Remy P, et al. (2007) Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington's disease. PLoS One 2: e166.
97. Keene CD, Chang RC, Leverenz JB, Kopyov O, Perlman S, et al. (2009) A patient with Huntington's disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 117: 329-338.
98. Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, et al. (2008) Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease. J Neurol Neurosurg Psychiatry 79: 948-951.
99. Capetian P, Knoth R, Maciaczyk J, Pantazis G, Ditter M, et al. (2009) Histological findings on fetal striatal grafts in a Huntington's disease patient early after transplantation. Neuroscience 160: 661-675.
100. Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, et al. (2009) Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A 106: 12483-12488.
101. Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1: 57-64.
102. Galloway JL, Zon LI (2003) Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol 53: 139-158.
103. Jude CD, Gaudet JJ, Speck NA, Ernst P (2008) Leukemia and hematopoietic stem cells: balancing proliferation and quiescence. Cell Cycle 7: 586-591.
104. Kegel KB, Sapp E, Alexander J, Valencia A, Reeves P, et al. (2009) Polyglutamine expansion in huntingtin alters its interaction with phospholipids. J Neurochem 110: 1585-1597.
105. Battaglia G, Cannella M, Riozzi B, Orobello S, Maat-Schieman ML, et al. (2011) Early defect of transforming growth factor beta1 formation in Huntington's disease. J Cell Mol Med 15: 555-571.
106. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, et al. (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med 205: 1869-1877.
107. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140: 918-934.
108. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, et al. (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington's disease. Glia 55: 1074-1084.
109. Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, et al. (2000) Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 47: 80-86.
110. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, et al. (2007) Microglial activation in presymptomatic Huntington's disease gene carriers. Brain 130: 1759-1766.
111. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, et al. (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66: 1638-1643.
112. Ma L, Morton AJ, Nicholson LF (2003) Microglia density decreases with age in a mouse model of Huntington's disease. Glia 43: 274-280.
113. Stack EC, Smith KM, Ryu H, Cormier K, Chen M, et al. (2006) Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington's disease mice. Biochim Biophys Acta 1762: 373-380.
114. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, et al. (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci U S A 100: 10483-10487.
115. Ryu JK, Choi HB, McLarnon JG (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington's disease. Neuroscience 141: 1835-1848.
116. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, et al. (2005) Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058: 120-128.
117. Jiang H, Liu CX, Feng JB, Wang P, Zhao CP, et al. (2010) Granulocyte colony-stimulating factor attenuates chronic neuroinflammation in the brain of amyloid precursor protein transgenic mice: an Alzheimer's disease mouse model. J Int Med Res 38: 1305-1312.
118. Pollari E, Savchenko E, Jaronen M, Kanninen K, Malm T, et al. (2011) Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 8: 74.
119. Lee ST, Park JE, Kim DH, Kim S, Im WS, et al. (2008) Granulocyte-colony stimulating factor attenuates striatal degeneration with activating survival pathways in 3-nitropropionic acid model of Huntington's disease. Brain Res 1194: 130-137.
120. Metzler M, Helgason CD, Dragatsis I, Zhang T, Gan L, et al. (2000) Huntingtin is required for normal hematopoiesis. Hum Mol Genet 9: 387-394.
121. Lu CZ, Xiao BG (2006) G-CSF and neuroprotection: a therapeutic perspective in cerebral ischaemia. Biochem Soc Trans 34: 1327-1333.
122. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493-506.
123. Stack EC, Kubilus JK, Smith K, Cormier K, Del Signore SJ, et al. (2005) Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington's disease transgenic mice. J Comp Neurol 490: 354-370.
124. Bolivar VJ, Manley K, Messer A (2003) Exploratory activity and fear conditioning abnormalities develop early in R6/2 Huntington's disease transgenic mice. Behav Neurosci 117: 1233-1242.
125. Rudenko O, Tkach V, Berezin V, Bock E (2009) Detection of early behavioral markers of Huntington's disease in R6/2 mice employing an automated social home cage. Behav Brain Res 203: 188-199.
126. File SE, Mahal A, Mangiarini L, Bates GP (1998) Striking changes in anxiety in Huntington's disease transgenic mice. Brain Res 805: 234-240.
127. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31: 959-962.
128. Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI (2005) Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8: 109-116.
129. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, et al. (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8: 97-108.
130. Querfurth E, Schuster M, Kulessa H, Crispino JD, Doderlein G, et al. (2000) Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev 14: 2515-2525.
131. Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, et al. (2003) Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 23: 1390-1402.
132. Usui T, Preiss JC, Kanno Y, Yao ZJ, Bream JH, et al. (2006) T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med 203: 755-766.
133. Dahl R, Iyer SR, Owens KS, Cuylear DD, Simon MC (2007) The transcriptional repressor GFI-1 antagonizes PU.1 activity through protein-protein interaction. J Biol Chem 282: 6473-6483.
134. Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, et al. (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. J Neurochem 118: 288-303.
135. Okamura A, Yakushijin K, Inui Y, Funakoshi Y, Kawamori Y, et al. (2011) Successful neutrophil engraftment by reduced use of granulocyte colony-stimulating factor after allogeneic hematopoietic stem cell transplantation with mycophenolate mofetil for graft-versus-host disease prophylaxis. Int J Hematol 93: 765-770.
136. Pezzoli G, Tesei S, Canesi M, Sacilotto G, Vittorio M, et al. (2010) The effect of repeated administrations of granulocyte colony stimulating factor for blood stem cells mobilization in patients with progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. Clin Neurol Neurosurg 112: 65-67.

Link to school's url:Link url
Link record message
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
system icon system icon