跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴冠誠
研究生(外文):Kuan-Cheng Lai
論文名稱:多層複合物鷹架用於骨之修復
論文名稱(外文):Osteochondral Defect Repaired with a Multi-layered Composite Scaffold
指導教授:王盈錦
指導教授(外文):Yng-Jiin Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:N/A
外文關鍵詞:N/A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
關節軟骨由於本身軟骨細胞的再生能力低且缺乏血流供應等因素導致自我修復能力不佳。現有的治療方式仍因軟骨數量有限、新生軟骨無法與原生軟骨密合以致無法長期荷重使得關節軟骨再生仍是目前臨床上相當具挑戰性的課題。雖然許多策略以組織工程的方式修復關節軟骨缺陷,但結果不盡理想。本研究發展膠原蛋白/三鈣磷酸鹽微粒合成移植物並以此微粒粉末交聯明膠製備支架。觀察微粒發現三鈣磷酸鹽顆粒均勻分佈於膠原蛋白纖維基質中。透過穿透式電子顯微鏡可觀察到膠原蛋白纖維的特徵明暗帶,顯示三鈣磷酸鹽顆粒不會妨礙膠原蛋白的重組。膠原蛋白/三鈣磷酸鹽微粒粉末交聯明膠製成的支架為一高孔洞結構,孔洞大小分佈於 50~150μm 之間。本研究同時以骨軟骨缺陷動物實驗模式探討利用 HA-CMC 阻隔膜防止新生骨組織生長到軟骨部的潛力。手術後一個月,新生軟骨與周邊原生軟骨及新生軟骨下骨部有良好的整合性,新生組織近似透明軟骨,但軟骨細胞的排列方式不同於原生軟骨呈柱狀排列。手術後三個月,新生軟骨與周邊原生軟骨及新生軟骨下骨部亦有良好的整合性。此外,軟骨下骨板非常完整,新生軟骨形態近似透明軟骨且軟骨細胞呈柱狀排列。在對照組方面,(1) 無填入材料及 (2) 填入支架並覆蓋骨膜得到較差的組織修復,缺陷填滿纖維軟骨及纖維組織。總結來說,利用 HA-CMC 阻隔膜於骨軟骨缺陷修復可防止新生骨組織生長到軟骨部以得到較佳的修復成效。
Poor spontaneous healing of articular cartilage is mainly due to the low proliferation rate of chondrocyte and insufficient blood supply. The pitfalls of treatment nowadays such as autologous chondrocyte transplantation include limited cartilage donor site available, poor integration between native and regenerative cartilage tissues, and inability to withstand a long term physiological loading. Although strategies of repairing articular cartilage defects with tissue engineering approach have been documented, none is satisfactory. We here developed a synthetic graft consisted of collagen/β-TCP microspheres, collagen/β-TCP microsphere powder and glutaraldehyde-crosslinked gelatin scaffold. The microspheres we fabricated contain β-TCP particles distributed homogenously in the collagen fiber matrix. And the characteristic banding pattern of collagen fibers as shown by transmission electron microscope suggests that the reconstitution of collagen was not hindered by the β-TCP particulates. The scaffold comprised of collagen/β-TCP microsphere powder and glutaraldehyde-crosslinked gelatin exhibits a highly porous structure with pore sizes ranging from 50 to 150 μm. By conducting animal experiment of osteochondral defect model, we explore the potential of using HA-CMC film to prevent regenerated bone tissue from growing into the cartilaginous compartment. At one month post-operation, the regenerated cartilage layer exhibited good structural integration to the adjacent native cartilage and regenerated subchondral bone. This regenerated tissue layer is similar to hyaline cartilage, but its chondrocytes were not arranged in a columnar fashion as observed in the native cartilage. By three months, most of the regenerated cartilage layer showed good integration into regenerated subchondral bone and adjacent native cartilage. In addition, the subchondral plates were intact, morphologically similar to the hyaline cartilage and its chondrocytes showed columnar organization. Poor tissue repair was found in the control groups of either (1) nontreated, or (2) filled with scaffold then convered with periosteum. In these two cases, defect sites were filled with fibrocartilage and fibrous tissue. In conclusion, HA-CMC film can be used to prevent new bone tissue regenerated into the cartilaginous compartment for a better osteochondral defect repairing.
目錄
中文摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 關節軟骨 2
1-3 軟骨細胞外基質 4
1-4 關節軟骨缺陷疾病與分類 6
1-5 軟骨缺損治療方法 7
1-5-1 非侵入性治療 7
1-5-2 顯微灌洗術及關節清術 7
1-5-3 骨髓刺激修復 8
1-5-4 自體骨軟骨移植 8
1-5-5 自體軟骨細胞移植 9
1-6 軟骨組織工程 10
1-7 利用複合載體修補骨軟骨缺損 12
1-7-1 複合載體組合策略 12
1-7-2 細胞植入載體策略 13
1-7-3 設計複合載體修補骨軟骨缺損 14
1-8 應用膠原蛋白微粒於軟骨下骨部缺陷修復 15
1-9 膠原蛋白 16
1-10 β-三鈣磷酸鹽 19
1-11 透明質酸 19
1-12 應用骨膜於軟骨新生 22
1-13 研究動機 24
第二章 實驗藥品與儀器 25
2-1 實驗藥品 25
2-2 實驗儀器 27
第三章 實驗方法 28
3-1 乳化法製備膠原蛋白/三鈣磷酸鹽微粒 28
3-1-1 掃描式電子顯微鏡樣本製備 28
3-1-2 穿透式電子顯微鏡樣本製備 29
3-1-3 膠原蛋白/三鈣磷酸鹽微粒無菌處理 29
3-2 膠原蛋白/三鈣磷酸鹽微粒粉末交聯明膠製備支架 30
3-2-1 膠原蛋白/三鈣磷酸鹽微粒交聯明膠支架剖面結構觀察 30
3-3 HA-CMC 阻隔膜製備 30
3-4 HA膠體製備 31
3-5 骨軟骨缺陷修復動物實驗 31
3-6 組織切片及化學染色分析 33
3-6-1 組織切片製作 33
3-6-2 蘇木紫-伊紅染色 34
3-6-3 Alcian blue 染色 35
3-7 動物實驗評估與統計方式 36
第四章 結果與討論 38
4-1 膠原蛋白/三鈣磷酸鹽微粒掃瞄式電子顯微鏡分析 38
4-2 膠原蛋白/三鈣磷酸鹽微粒穿透式電子顯微鏡分析 39
4-3 膠原蛋白/三鈣磷酸鹽微粒粉末交聯明膠製備支架 40
4-4 膠原蛋白/三鈣磷酸鹽微粒粉末交聯明膠支架剖面結構觀察 41
4-5 骨軟骨缺陷動物實驗組織化學分析 43
4-5-1 骨軟骨缺陷修復於手術後一個月之組織化學分析 43
4-5-1-1 以支架、HA-CMC 阻隔膜、HA 膠體和骨膜修復 43
4-5-1-2 以支架和骨膜修復 46
4-5-1-3 無填入任何材料 49
4-5-1-4 Pineda score 統計分析 52
4-5-2 骨軟骨缺陷修復於手術後二個月之組織化學分析 53
4-5-2-1 以支架、HA-CMC 阻隔膜、HA 膠體和骨膜修復 53
4-5-2-2 以支架和骨膜修復 56
4-5-2-3 無填入任何材料 59
4-5-2-4 Pineda score 統計分析 62
4-5-3 骨軟骨缺陷修復於手術後三個月之組織化學分析 63
4-5-3-1 以支架、HA-CMC 阻隔膜、HA 膠體和骨膜修復 63
4-5-3-2 以支架和骨膜修復 66
4-5-3-3 無填入任何材料 69
4-5-3-4 Pineda score 統計分析 72
4-5-4 不同時間點 Pineda score 統計比較 73
第五章 結論 74
第六章 參考文獻 75

圖目錄
圖 1-1 關節軟骨分層結構 3
圖 1-2 關節軟骨細胞外基質組成成份 4
圖 1-3 Aggrecan 結構圖 5
圖 1-4 關節軟骨中 proteoglycan 結構及膨潤性質示意圖 6
圖 1-5 軟骨缺損分類 7
圖 1-6 自體骨軟骨移植 8
圖 1-7 自體軟骨細胞移植 9
圖 1-8 膠原蛋白分子及組成纖維示意圖 18
圖 1-9 膠原蛋白重組現象 18
圖 1-10 透明質酸化學結構式 20
圖 1-11 骨膜之組織結構 23
圖 3-1 乳化法製備膠原蛋白/三鈣磷酸鹽微粒 28
圖 3-2 骨軟骨缺陷修復動物實驗步驟 32
圖 4-1 以 SEM 觀察膠原蛋白/三鈣磷酸鹽微粒表面結構 39
圖 4-2 以 TEM 觀察膠原蛋白/三鈣磷酸鹽微粒內部重組結構 40
圖 4-3 膠原蛋白/三鈣磷酸鹽微粒粉末交聯明膠支架外觀結構 41
圖 4-4 膠原蛋白/三鈣磷酸鹽微粒粉末交聯明膠支架孔洞分佈 42
圖 4-5 膠原蛋白/三鈣磷酸鹽微粒粉末於支架中分佈情形 42
圖 4-6 巨觀觀察缺陷修復情形:實驗組,手術後一個月,植入支架、HA-CMC
阻隔膜、HA 膠體和骨膜 44
圖 4-7 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後一個月組織切片以 HE 染色得到的結果 (x40) 44
圖 4-8 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後一個月組織切片以 HE 染色得到的結果 (x200) 45
圖 4-9 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後一個月組織切片以 Alcian blue 染色得到的結果 (x40) 45
圖 4-10 巨觀觀察缺陷修復情形:對照組,手術後一個月,植入支架和骨膜 46
圖 4-11 植入支架和骨膜於兔子膝關節,手術後一個月組織切片以 HE 染色得到的結果 (x40) 47
圖 4-12 植入支架和骨膜於兔子膝關節,手術後一個月組織切片以 HE 染色得到的結果 (x200) 47
圖 4-13 植入支架和骨膜於兔子膝關節,手術後一個月組織切片以 Alcian blue 染色得到的結果 (x40) 47
圖 4-14 巨觀觀察缺陷修復情形:對照組,手術後一個月,無填入任何材料 49
圖 4-15 無填入任何材料於兔子膝關節,手術後一個月組織切片以 HE 染色得到的結果 (x40) 50
圖 4-16 無填入任何材料於兔子膝關節,手術後一個月組織切片以 HE 染色得到的結果 (x200) 50
圖 4-17 無填入任何材料於兔子膝關節,手術後一個月組織切片以 Alcian blue 染色得到的結果 (x40) 51
圖 4-18 手術後一個月以 Pineda score 分析統計軟骨修復成效 52
圖 4-19 巨觀觀察缺陷修復情形:實驗組,手術後二個月,植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜 53
圖 4-20 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後二個月組織切片以 HE 染色得到的結果 (x40) 54
圖 4-21 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後二個月組織切片以 HE 染色得到的結果 (x200) 54
圖 4-22 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後二個月組織切片以 Alcian blue 染色得到的結果 (x40) 55
圖 4-23 巨觀觀察缺陷修復情形:對照組,手術後二個月,植入支架和骨膜 56
圖 4-24 植入支架和骨膜於兔子膝關節,手術後二個月組織切片以 HE 染色得到的結果 (x40) 57
圖 4-25 植入支架和骨膜於兔子膝關節,手術後二個月組織切片以 HE 染色得到的結果(x200) 57
圖 4-26 植入支架和骨膜於兔子膝關節,手術後二個月組織切片以 Alcian blue 染色得到的結果 (x40) 58
圖 4-27 巨觀觀察缺陷修復情形:對照組,手術後二個月,無填入任何材料 59
圖 4-28 無填入任何材料於兔子膝關節,手術後二個月組織切片以 HE 染色得到的結果 (x40) 60
圖 4-29 無填入任何材料於兔子膝關節,手術後二個月組織切片以 HE 染色得到的結果 (x100) 60
圖 4-30 無填入任何材料於兔子膝關節,手術後二個月組織切片以 Alcian blue 染色得到的結果 (x40) 61
圖 4-31 手術後二個月以 Pineda score 分析統計軟骨修復成效 62
圖 4-32 巨觀觀察缺陷修復情形:實驗組,手術後三個月,植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜 63
圖 4-33 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後三個月組織切片以 HE 染色得到的結果 (x40) 64
圖 4-34 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後三個月組織切片以 HE 染色得到的結果 (x200) 64
圖 4-35 植入支架、HA-CMC 阻隔膜、HA 膠體和骨膜於兔子膝關節,手術後三個月組織切片以 Alcian blue 染色得到的結果 (x40) 65
圖 4-36 巨觀觀察缺陷修復情形:對照組,手術後三個月,植入支架和骨膜 66
圖 4-37 植入支架和骨膜於兔子膝關節,手術後三個月組織切片以 HE 染色得到的結果 (x40) 67
圖 4-38 植入支架和骨膜於兔子膝關節,手術後三個月組織切片以 HE 染色得到的結果 (x200) 67
圖 4-39 植入支架和骨膜於兔子膝關節,手術後三個月組織切片以 Alcian blue 染色得到的結果 (x40) 68
圖 4-40 巨觀觀察缺陷修復情形:對照組,手術後三個月,無填入任何材料 69
圖 4-41 無填入任何材料於兔子膝關節,手術後三個月組織切片以 HE 染色得到的結果 (x40) 70
圖 4-42 無填入任何材料於兔子膝關節,手術後三個月組織切片以 HE 染色得到的結果 (x100) 70
圖 4-43 無填入任何材料於兔子膝關節,手術後三個月組織切片以 Alcian blue 染色得到的結果 (x40) 71
圖 4-44 手術後三個月以 Pineda score 分析統計軟骨修復成效 72
圖 4-45 以 Pineda score 分析比較不同時間點軟骨修復成效 73

表目錄
表 1-1 GAG 種類 5
表 3-1 修正後的 Pineda score 37

Aigner, J., Tegeler, J., Hutzler, P., Campoccia, D., Pavesio, A., Hammer, C., Kastenbauer, E., and Naumann, A. (1998). Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. Journal of biomedical materials research 42, 172-181.

Aigner, T., and Stove, J. (2003). Collagens--major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Advanced drug delivery reviews 55, 1569-1593.

Allison, D.D., and Grande-Allen, K.J. (2006). Review. Hyaluronan: a powerful tissue engineering tool. Tissue engineering 12, 2131-2140.

Barocas, V.H., Moon, A.G., and Tranquillo, R.T. (1995). The fibroblast-populated collagen microsphere assay of cell traction force--Part 2: Measurement of the cell traction parameter. Journal of biomechanical engineering 117, 161-170.

Bhosale, A.M., and Richardson, J.B. (2008). Articular cartilage: structure, injuries and review of management. British medical bulletin 87, 77-95.

Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England journal of medicine 331, 889-895.

Butnariu-Ephrat, M., Robinson, D., Mendes, D.G., Halperin, N., and Nevo, Z. (1996). Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clinical orthopaedics and related research, 234-243.

Chang, C.H., Kuo, T.F., Lin, C.C., Chou, C.H., Chen, K.H., Lin, F.H., and Liu, H.C. (2006). Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27, 1876-1888.

Choi, Y.S., Lim, S.M., Shin, H.C., Lee, C.W., Kim, S.L., and Kim, D.I. (2007). Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnology letters 29, 323-329.

Chu, C.R., Dounchis, J.S., Yoshioka, M., Sah, R.L., Coutts, R.D., and Amiel, D. (1997). Osteochondral repair using perichondrial cells. A 1-year study in rabbits. Clinical orthopaedics and related research, 220-229.

Correia, C.R., Moreira-Teixeira, L.S., Moroni, L., Reis, R.L., van Blitterswijk, C.A., Karperien, M., and Mano, J.F. (2011). Chitosan scaffolds containing hyaluronic Acid for cartilage tissue engineering. Tissue engineering Part C, Methods 17, 717-730.

Coutts, R.D., Healey, R.M., Ostrander, R., Sah, R.L., Goomer, R., and Amiel, D. (2001). Matrices for cartilage repair. Clinical orthopaedics and related research, S271-279.

Demarteau, O., Wendt, D., Braccini, A., Jakob, M., Schafer, D., Heberer, M., and Martin, I. (2003). Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochemical and biophysical research communications 310, 580-588.

Fukuda, A., Kato, K., Hasegawa, M., Hirata, H., Sudo, A., Okazaki, K., Tsuta, K., Shikinami, Y., and Uchida, A. (2005). Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials 26, 4301-4308.

Grigolo, B., De Franceschi, L., Roseti, L., Cattini, L., and Facchini, A. (2005). Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials 26, 5668-5676.

Hangody, L., Kish, G., Karpati, Z., Udvarhelyi, I., Szigeti, I., and Bely, M. (1998). Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21, 751-756.

Hangody, L., Rathonyi, G.K., Duska, Z., Vasarhelyi, G., Fules, P., and Modis, L. (2004). Autologous osteochondral mosaicplasty. Surgical technique. The Journal of bone and joint surgery American volume 86-A Suppl 1, 65-72.

Helmick, C.G., Felson, D.T., Lawrence, R.C., Gabriel, S., Hirsch, R., Kwoh, C.K., Liang, M.H., Kremers, H.M., Mayes, M.D., Merkel, P.A., et al. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis and rheumatism 58, 15-25.

Hunziker, E.B., and Driesang, I.M. (2003). Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 11, 320-327.

Hunziker, E.B., Driesang, I.M., and Saager, C. (2001). Structural barrier principle for growth factor-based articular cartilage repair. Clinical orthopaedics and related research, S182-189.

Junqueira, L.C., and Montes, G.S. (1983). Biology of collagen-proteoglycan interaction. Archivum histologicum Japonicum = Nihon soshikigaku kiroku 46, 589-629.

Kandel, R.A., Grynpas, M., Pilliar, R., Lee, J., Wang, J., Waldman, S., Zalzal, P., and Hurtig, M. (2006). Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials 27, 4120-4131.

Lisignoli, G., Cristino, S., Piacentini, A., Toneguzzi, S., Grassi, F., Cavallo, C., Zini, N., Solimando, L., Mario Maraldi, N., and Facchini, A. (2005). Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials 26, 5677-5686.

Livesley, P.J., Doherty, M., Needoff, M., and Moulton, A. (1991). Arthroscopic lavage of osteoarthritic knees. The Journal of bone and joint surgery British volume 73, 922-926.

Martin, I., Miot, S., Barbero, A., Jakob, M., and Wendt, D. (2007). Osteochondral tissue engineering. Journal of biomechanics 40, 750-765.

Matsusue, Y., Yamamuro, T., and Hama, H. (1993). Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association 9, 318-321.

Muschler, G.F., Negami, S., Hyodo, A., Gaisser, D., Easley, K., and Kambic, H. (1996). Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clinical orthopaedics and related research, 250-260.

Nimni, M.E. (1983). Collagen: structure, function, and metabolism in normal and fibrotic tissues. Seminars in arthritis and rheumatism 13, 1-86.

O'Driscoll, S.W., and Fitzsimmons, J.S. (2000). The importance of procedure specific training in harvesting periosteum for chondrogenesis. Clinical orthopaedics and related research, 269-278.

O'Driscoll, S.W., Recklies, A.D., and Poole, A.R. (1994). Chondrogenesis in periosteal explants. An organ culture model for in vitro study. The Journal of bone and joint surgery American volume 76, 1042-1051.
Obradovic, B., Martin, I., Padera, R.F., Treppo, S., Freed, L.E., and Vunjak-Novakovic, G. (2001). Integration of engineered cartilage. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 19, 1089-1097.

Rowan, A.D. (2001). Cartilage catabolism in arthritis: factors that influence homeostasis. Expert reviews in molecular medicine 2001, 1-20.

Schaefer, D., Martin, I., Shastri, P., Padera, R.F., Langer, R., Freed, L.E., and Vunjak-Novakovic, G. (2000). In vitro generation of osteochondral composites. Biomaterials 21, 2599-2606.

Schagemann, J.C., Kurz, H., Casper, M.E., Stone, J.S., Dadsetan, M., Yu-Long, S., Mrosek, E.H., Fitzsimmons, J.S., O'Driscoll, S.W., and Reinholz, G.G. (2010). The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules. Biomaterials 31, 2798-2805.

Schek, R.M., Taboas, J.M., Segvich, S.J., Hollister, S.J., and Krebsbach, P.H. (2004). Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue engineering 10, 1376-1385.

Shah, M.R., Kaplan, K.M., Meislin, R.J., and Bosco, J.A., 3rd (2007). Articular cartilage restoration of the knee. Bulletin of the NYU hospital for joint diseases 65, 51-60.

Simon, T.M., Van Sickle, D.C., Kunishima, D.H., and Jackson, D.W. (2003). Cambium cell stimulation from surgical release of the periosteum. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 21, 470-480.

Solchaga, L.A., Temenoff, J.S., Gao, J., Mikos, A.G., Caplan, A.I., and Goldberg, V.M. (2005). Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 13, 297-309.

Stevens, M.M., Qanadilo, H.F., Langer, R., and Prasad Shastri, V. (2004). A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25, 887-894.

TenHuisen, K.S., Martin, R.I., Klimkiewicz, M., and Brown, P.W. (1995). Formation and properties of a synthetic bone composite: hydroxyapatite-collagen. Journal of biomedical materials research 29, 803-810.

Toh, W.S., Lee, E.H., Guo, X.M., Chan, J.K., Yeow, C.H., Choo, A.B., and Cao, T. (2010). Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31, 6968-6980.

Tuli, R., Nandi, S., Li, W.J., Tuli, S., Huang, X., Manner, P.A., Laquerriere, P., Noth, U., Hall, D.J., and Tuan, R.S. (2004). Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue engineering 10, 1169-1179.

Wang, X., Grogan, S.P., Rieser, F., Winkelmann, V., Maquet, V., Berge, M.L., and Mainil-Varlet, P. (2004). Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials 25, 3681-3688.

West, D.C., Hampson, I.N., Arnold, F., and Kumar, S. (1985). Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324-1326.

West, D.C., and Kumar, S. (1989). The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Experimental cell research 183, 179-196.

Wu, L.N., Ishikawa, Y., Genge, B.R., Sampath, T.K., and Wuthier, R.E. (1997). Effect of osteogenic protein-1 on the development and mineralization of primary cultures of avian growth plate chondrocytes: modulation by retinoic acid. Journal of cellular biochemistry 67, 498-513.

Wu, S.C., Chang, J.K., Wang, C.K., Wang, G.J., and Ho, M.L. (2010). Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials 31, 631-640.

Yamane, S., Iwasaki, N., Majima, T., Funakoshi, T., Masuko, T., Harada, K., Minami, A., Monde, K., and Nishimura, S. (2005). Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26, 611-619.

許元銘.(2009).膠原蛋白基材對類骨母細胞移動行為之影響及應用於硬骨修補之研究.博士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top