跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張曉英
研究生(外文):Shiao-Ying Chang
論文名稱:多孔防風柵附近氣流流場及其對懸浮微粒影響之研究
論文名稱(外文):Study for Numerical Flow Field Near Porous Fence and its Influence on Particle Suspension
指導教授:黃政雄黃政雄引用關係
指導教授(外文):Cheng-Hsiung Huang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:多孔防風柵氣流流場懸浮微粒孔隙率
外文關鍵詞:porous fenceflow fieldparticle suspensionporosity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用數值計算來探討防風柵後方之流體速度場、壓力場及紊流強度。研究中探討不同孔隙率多孔防風柵、有無防風柵、不同高度沙堆,及不同防風柵後方距離之速度場、壓力場及流體分佈關係。本研究討論不同條件下,多孔防風柵後方懸浮微粒揚起與速度場、壓力場,及紊流強度的關係。
研究結果顯示,孔隙率越大時,當氣流接近多孔防風柵,並穿透多孔防風柵會使流速變大,反之氣流會變小,且氣流在多孔防風柵後方會形成迴流區。當孔隙率為 30% 時,在低速區所得之防風效果較佳,而孔隙率為 50% 時,其防風效果較差;多孔防風柵構造物背風面之紊流強度比固體防風柵構造物為小,其中又以孔隙率 30% 之紊流強度較小。
探討懸浮微粒揚起的影響可發現孔隙率 ε=30% 的多孔防風柵微粒會呈現迴流的狀態使微粒集中並有效控制,但是在孔隙率為 ε=50% 時並不會呈現微粒集中而是往後蔓延的狀態,因此推論當孔隙率 ε=30% 時微粒可以較有效控制,避免微粒因氣流作用而揚起。

The study applied numerical simulation to discuss the fluid velocity field, pressure field and turbulence intensity to the rear of the wind fences. In the study, porous wind fences of different porosity, with or without wind fences, sand pile of different heights, and the velocity field, pressure field and fluid distribution relationships at different distance to the rear of wind fences were discussed. The study deliberated the reentrainment of particle suspension to the rear of wind fence in relation to the velocity field, pressure field and turbulence intensity under different conditions.
The results showed that the greater the porosity, when the air closed to the porous wind fences, and flew through the porous wind fences, the larger the flow rate, otherwise the smaller, and the air flow behind porous wind fences formed a return flow area. When the porosity was 30%, the wind deduction effect was better in the low velocity area, while the porosity was 50%, the wind deduction effect was less effective; the turbulence intensity was smaller behind porous wind fence structure than solid structures, wherein at 30% porosity reached less turbulence intensity.
Deliberating the effect of the reentrainment of particle suspension, it was found that while porosity was ε=30% the particles behind porous wind fences presented return flow status such that the particles concentrated and effectively controlled, however while porosity was ε=50% the particles appeared not concentrated but spreading backward status, therefore, it was inferred that when porosity ε=30%, the particles could be more effectively controlled, avoiding the reentrainment of particle suspension owing to the air flow effect.

摘要 I
ABSTRACT III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1研究源起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1風速與揚塵相關研究 3
2.2 防風構造物相關研究 5
2.3 微粒揚起機制探討 11
2.4 多孔防風構造物流場探討 21
2.5 揚塵排放係數 40
第三章 數值計算 46
第四章 結果與討論 48
4.1速度向量場 48
4.2壓力分佈圖 52
4.3紊流動能分佈 56
4.4平均速度圖 60
4.5微粒揚起與速度之比較 64
第五章 結論與建議 67
5.1結論 67
5.2建議 68
參考文獻 69


英文部分

Adhiwidjaja, I., Matsusaka, S., & Masuda, H. 1996, “Mechanism of formation of particle deposition layers by an aerosol flow,” Kagaku Kogaku Ronbunshu, 22, pp.127–133.
Adhiwidjaja, I., Matsusaka, S., Tanaka, H., & Masuda, H. 2000, “Simultaneous phenomenon of particle deposition and reentrainment: Effects of surface roughness on deposition layer of striped pattern,” Aerosol Science and Technology , 33, pp.323–333.
Bagnold, R.A., 1941, “The Physics of Blown Sand and Desert Dunes,” Mathuen, London.
Baines, W.D., Peterson, E.G., 1951, “An investigation of flow through screens,” Trans. ASME 73, pp.467–480.
Bofah, K.K., Alhinai, K.G., 1986, “Field tests of porous fences in the regime of sand laden wind,” Journal of Wind Engineering and Industrial Aerodynamics 23, pp.309–319.
Borges, A. R., and Viegas, D. X. 1988, “Shelter effect on a row of coal piles to prevent wind erosion,” J. Wind. Eng. Ind. Aerodyn., 29, pp.145–154.
Bradley, E.F., Mulhearn, P.J., 1983, “Development of velocity and shear stress distributions in the wake of porous shelter fence,” Journal of Wind Eng. Ind. Aerodyn. 15, pp.145.
Castro, I.P., 1971, “Wake characteristics of two-dimensional perforated plates normal to an air-stream,” J. Fluid Mech. 46, pp.599–609.
Counihan, J., Hunt, J.C.R., Jackson, P.S., 1974, “Wakes behind two-dimensional surface obstacles in turbulent boundary-layers,” J. Fluid Mech. 64, pp.529.
Fang, M. F., and Wang, D. Y. 1997, “On the flow around a vertical porous fence,” J. Wind. Eng. Ind. Aerodyn., 67, pp.415–424.
Finney, E.A., 1934, “Snow control on the highway,” Michigan Engineering Experiment Station (East Lansing), Bulletin No. 57, pp.62.
Foucaut, J.M., Stanislas, M., 1996, “Take-off threshold velocity of solid particles lying under a turbulent boundary layer,” Experiment in Fluids 20, pp.377–382.
Gandermer, J. 1979, “Wind shelters,”J. Ind. Aerodyn., 4, pp.371–389.
Gillette, D. A. 1977, “Fine particle emission due to wind erosion,” Trans. Am. Soc. Agric. Eng., 20, pp.891–897.
Gillette, D.A., 1974, “On the production of soil wind erosion aerosols having the potential for long range transport,” Journal of Research Atmosphere 8 (3/4), pp.735–744.
Hagen, L.J., Skidmore, E.L., Miller, P.L., Kipp, J.E., 1981, “Simulation of effect of wind barriers on airflow,” Trans. ASAE24, 1002.
Houser, C. A., and Nickling, W. G. 2001, “The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa,” Earth Surf. Processes Landforms, 26, pp.491–505.
Huang, Cheng-Hsiung, Lee, Chin-I, and Tsai, Chuen-Jinn, 2005, “Reduction of Particle Re-entrainment Using Porous Fence in front of Dust Samples,” Journal of Environmental Engineering-ASCE, Vol. 131, No. 12, pp.1644-1648.
Hyoung, B.K., Sang, J.L., 2001, “Hole diameter effect on flow characteristics of wake behind porous fences having the same porosity,” J. Fluid Mech. 28, pp.449-464.
Iversen, J.D., Greeley, R.G., Marshall, J.R., Pollack, J.B., 1987, “Aeolian saltation threshold: the effect of density ratio,” Sedimentology 34, pp.699–706.
Judd, M.J., Raupach, M.R., Fininigan, J.J., 1996, “A wind tunnel study of turbulent flow around single and multiple windbreaks,” part I: velocity fields. Boundary-Layer Meteorology80 (1/2), pp.127–165.
Kim, H.B., Lee, S.J., 2000, “Performance improvement of 2-frame PTV method using an adaptive hybrid scheme,” J. Kor. Soc. Mech. Eng. 24, pp.443–449.
Kind, R.J., 1986, “Snow-drifting: a review of modeling methods,” Cold Regions Science and Technology 12, pp.217–228.
Kind, R.J., 1990, “Mechanics of aeolian transport of snow and sand,” Journal of Wind Engineering and Industrial Aerodynamics36, pp.855–866.
Kiya, M., Sasaki, K., 1983, “Structure of a turbulent separation bubbles,” J. Fluid Mech. 137, pp.83–113.
Kousaka, Y., Okuyama, K. and Endo, Y. 1980, “Reentrainment Of Small Aggregate Particles From A Plane Surface By Air Stream,” J. Chem. Engng Jpn 13, pp.143-147.
Lee, S. J., and Kim, H. B. 1999, “Laboratory measurements of velocity and turbulence field behind porous fences,” J. Wind. Eng. Ind. Aerodyn., 80, pp.311–326.
Lee, S. J., and Lim, H. C. 2001, “A numerical study on flow around a triangular prism located behind a porous fence,” J. Fluid Mech. 28, pp.209-221.
Lee, S. J., Park, K. C., and Park, C. W. 2002, “Wind tunnel observations about the shelter effect of porous fences on the sand particle movements,” Atmos. Environ., 36, pp.1453–1463.
Lee, S.J., Kim, H.B., 1998, “Velocity field measurements of flow around a triangular prism behind a porous fence,” Journal of Wind Engineering and Industrial Aerodynamics 77–78, pp.521–530.
Lee, S.J., Park, C.W., 1997, “Surface pressure variations on a triangular prism by porous fences in a simulated atmospheric boundary layer,” J. Wind Eng. Aerodyn. 73, 45.
Lee, S.J., Park, C.W., 1998, “Surface-pressure variations on a triangular prism by porous fences in a simulated atmospheric boundary layer,” Journal of Wind Engineering and Industrial Aerodynamics 73, pp.45–58.
Lee, S.J., Park, C.W., 1999, “Surface pressure characteristics on a triangular prism located behind a porous fence,” Journal of Wind Engineering and Industrial Aerodynamics80, pp.69–83.
Loredo-Souza, A. and Schettini, E. 2005, “Wind Tunnel Studies on the Shelter Effect of Porous Fences on Coal Piles Models of the CVRD – Vitória, Brazil. A&WMA’s 98th Annual Conference & Exhibition – Exploring Innovative Solutions,” Minneapolis, Minnesota, USA. June 21-24.
Lu, H., Shao, Y., 2001, “Toward quantitative prediction of dust storms: an integrated wind erosion modeling system and its applications,” Environmental Modeling and Software 16, pp.233–249.
Masuda, H., & Matsusaka, S. 1997, “Particle deposition and reentrainment,” In Gotoh, K., Masuda, H., & Higashitani, K. (Eds.), Powder technology handbook (2nd ed.), New York: Marcel Dekker, pp.143–154.
Matsusaka, S., Adhiwidjaja, I., Nishio, T., & Masuda, H. 1998, “Formation of striped pattern of deposition layers by an aerosol flow—analysis of thickness and interval of layers,” Advanced Powder Technology, 9, pp.207–218.
Matsusaka, S., and Masuda, H. 1996, “Particle reentrainment from a fine powder layer in a turbulent airflow,” Aerosol Sci. Technol., 24, pp.69–84.
Matsusaka, S., Koumura, M., & Masuda, H. 1997, “Analysis of adhesive force between particle and wall based on particle reentrainment by airflow and centrifugal separation,” Kagaku Kogaku Ronbunshu, 23, pp.561–568.
Matsusaka, S., Shimizu, M., & Masuda, H. 1993, “Formation of wall particle layers by simultaneous deposition and reentrainment of Hne particles in turbulent aerosol flows,” Kagaku Kogaku Ronbunshu, 19, pp.251–257.
Matsusaka, S., Theerachaisupakij, W., Yoshida, H., & Masuda, H. 2001, “Deposition layers formed by a turbulent aerosol flow of micron and sub-micron particles,” Powder Technology, 118, pp.130–135.
McKenna-Neuman, C., Maxwell, C. D., and Boulton, J. W. 1996, “Wind transport of sand surfaces crusted with photoautotrophic microorganisms,” Catena, 27, pp.229–247.
Nicholson, K. W. 1993, “Wind tunnel experiments on the resuspension of particle material,” Atmos. Environ., 27, pp.181–188.
Nickling, W. G., and Ecclestone, M. 1981, “The effects of soluble salts on the threshold shear velocity of fine sand,” Sedimentology, 28, pp.505–510.
Ogawa, T., Nakayama, M., Murayama, S., Sasaki, Y., 1991, “Characteristics of wind pressure on basic structures with curved surfaces and their response in turbulent flow,” J. Fluid Mech. 38, pp.427.
Park, C.W., Lee, S. J. 2002, “ Verification of the Shelter Effect of a Windbreak on Coal Piles in the POSCO Open Storage Yards at the Kwang-Yang Works,” Atmospheric Environment 36, pp.2171-2185.
Park, C.W., Lee, S.J., 2001, “Experimental study on surface pressure and flow structure around a triangular prism located behind a porous fence,” Proceedings of the Fifth APCWE, pp.709–712.
Patankar; S.V., 1981, “Numerical Heat Transfer and Fluid Flow,” McGraw-Hill.
Perera, M. A. E. S. 1981, “Shelter behind two-dimensional solid and porous fences,” J. Wind. Eng. Ind. Aerodyn., 8, pp.93–104.
Plate, E.J., 1971, “The aerodynamics of shelter belts,” Agric. Meteorol. 8, pp.203.
Raine, J. K. 1977, “Wind protection by model fences in a simulated atmospheric boundary layer,” J. Ind. Aerodyn., 2, pp.159–180.
Raju, R., Garde, R. J., Singh, S. K., and Singh, N. 1988, “Experimental study on characteristics of flow past porous fences,” J. Wind. Eng. Ind. Aerodyn., 29, pp.155–163.
Ranga, R.K.G., Garde, R.J., Singh, S.K., Singh, N., 1988, “Experimental study on characteristics of flow past porous fences,” Journal of Wind Engineering and Industrial Aerodynamics 29, pp.155–163.
Raupach, M.R., 1981, “Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers,” J. Fluid Mech. 108, pp.363.
Raupach, M.R., Woods, N., Dorr, G., Leys, J.F., Cleugh, H.A., 2001, “The entrapment of particles by windbreaks,” Atmospheric Environment 35, pp.3373–3383.
Rumpf, H. 1970, “Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftu ̈bertragung an Kontaktpunkten,” Chemie Ingenieur Technik, 42, pp.538–540.
Shiau, B. S. 1998, “Measurement of turbulence characteristics for flow past porous windscreen,” J. Wind. Eng. Ind. Aerodyn., 74, pp.521–530.
Slinn, W.G.N., 1982, “Predictions for particle deposition to vegetative canopies,” Atmospheric Environment 16, pp.1785–1794.
Subhas C. Yaragal, H.S. Govinda Ram*,K. Keshava Murthy, 1997, “An experimental investigation of flow fields downstream of solid and porous fences,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 66, No. 2, pp. 127-140.
Tani, N., 1958, “On the wind tunnel test of the model shelter hedge,” Bull. Natl. Inst. Agrid. Sci., Ser. A, 6, pp.75.
Theerachaisupakij, W., Matsusaka, S., & Masuda, H. 2001, “Simultaneous phenomenon of particle deposition and reentrainment on a vibrating wall,” Journal of Aerosol Science, 32, pp.S935–S936.
Theerachaisupakij, W., Matsusaka, S., Akashi, Y., & Masuda, H., 2003, “Reentrainment of deposited particles by drag and aerosol collision,” Journal of Aerosol Science, 34, pp.261-274.
Tsai, C-J., Pui, D. Y. H., & Liu, B. Y. H. 1991, “Particle detachment from disk surfaces of computer disk drives,” Journal of Aerosol Science, 22, pp.737–746.
V.P. Gupta, K.G. Ranga Raju, 1987, “Separated flow in lee of solid and porous fences,” J. Hyd. Eng. 113, pp.1264-1276.
Villermaux, E., Hopfinger, E.J., 1994, “Periodically arranged co-flowing jets,” J. Fluid Mech. 263, pp.63–92.
Wang, H.-C., 1990, “Effects of inceptive motion on particle detachment from surfaces,” Aerosol Science and Technology , 13, pp.386–393.
Wilson, J.D., 1997, “A field study of the mean pressure about a windbreak,” Boundary-Layer Meteorology, 85, pp.327.
Wilson, J.D., Swaters, G.E., Ustina, F., 1990, “A perturbation analysis of turbulent flow through a porous barrier,” Q. J. R. Meteorol. Soc. 116, pp.989.
Yaragal, S. C., Ram, H. S. G., and Murthy, K. K. 1997, “An experimental investigation of flow fields downstream of solid and porous fences,” J. Wind. Eng. Ind. Aerodyn., 66, pp.127–140.
Zhibao Dong *, Wanyin Luo, Guangqiang Qian, Hongtao Wang, 2007, “A wind tunnel simulation of the mean velocity fields behind upright porous fences,” Agricultural and Forest Meteorology, Vol. 146, No. 5, pp.82-93.
Zingg, A.W., 1952, “Wind tunnel studies of the movement of sedimentary material,” Proceedings of the Fifth Hydraulics Conference, Vol. 34, University of Iowa, pp.111–135.

中文部分

林忠義,1996 防風柵網功能實驗研究-以興達燃煤儲運場為例。國立台灣大學環境工程研究所碩士論文。
邱啟芳,1987 海岸防風林與防風牆之防風防鹽功效比較實驗。國立中興大學水土保持研究所碩士論文。
黃政雄、戴志遠,滿政顗,陳瀅玉,「直立防風擋牆的數值流場分析研究」,第二十二屆空氣污染控制技術研討會論文集,台灣:桃園,民國94年11月。
黃隆明、楊清華(2005年9月),「防風柵透風間隙配置對防風功效之研究」,國立中興大學水土保持學報,37(3):287~300。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top