跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱凰菁
研究生(外文):Huang-Ching Chu
論文名稱:以 Sono-Fenton 程序降解乙二胺提升其生物可分解度之研究
論文名稱(外文):Biodegradability enhancement of ethylenediamine wastewater by means of sono-Fenton process
指導教授:馬英石馬英石引用關係
指導教授(外文):Ying-Shih Ma
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:乙二胺Sono-Fenton程序生物可分解度總有機碳一階反應動力模式
外文關鍵詞:EthylenediamineSono-Fenton processBiodegradabilityTOCFirst-order kinetic model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究之主要目的為結合超音波以及 Fenton 程序 (稱為 Sono-Fenton) 在不同條件下對不易生物分解之乙二胺廢水進行分解,除了期望能有效提升乙二胺廢水之生物可分解度外,並能了解各項反應因子如曝氣、H2O2 (0 - 200 mg L-1)、Fe2+ (5 - 50 mg L-1)、反應溫度 (20 - 50oC) 及批次與連續加藥之差異等對於乙二胺分解結果之影響。實驗結果顯示,初始之乙二胺廢水濃度為 50 mg L-1,反應之 pH 為 3,以超音波/H2O2 程序在 H2O2 濃度為 100 mg L-1 時,經過 60 分鐘反應後,乙二胺之分解率為 20%,總有機碳 (total organic carbon, TOC) 之去除律僅 3%,生物可分解度 (BOD5/COD) 為 0.23,若以超音波/Air/H2O2 程序進行處理時,則乙二胺分解率、TOC 去除率及生物可分解度微幅上升至 22%、3% 及 0.30。以 Sono-Fenton 程序進行處理時,Fe2+ 添加濃度越高,乙二胺分解效率及生物可分解度之提高效果越佳,當 Fe2+ 為 40 mg L-1 ,反應 60 分鐘後乙二胺去除率為 39%,TOC 去除率則為 10%,而 BOD5/COD 之比值最後可達到 0.71,均較超音波/H2O2 程序為佳。在反應溫度的影響上,溫度越高反而不利於 Sono-Fenton 反應之進行,反應溫度越高,乙二胺分解率、TOC 去除率及生物可分解度均呈現降低之現象,當反應溫度 50oC時,乙二胺分解率及 TOC 去除率分別降低至18% 及 4%,均低於 25oC之。若將 Sono-Fenton程序中之 H2O2 由批次加藥改為連續加藥程序則可發現,經反應 120 分鐘後之 TOC 去除率可提高 13%,乙二胺分解率及生物可分解度分別為 39% 及 0.38。實驗數據顯示,利用一階反應動力模式應用超音波/H2O2 或 Sono-Fenton 程序分解乙二胺之趨勢,其反應速率常數與 H2O2、Fe2+ 加入量及反應溫度有關,最高值為 7.3×10-3 min-1。由上述之結果可得知,Sono-Fenton 程序若應用於乙二胺廢水之前處理,除可分解部份之乙二胺,經處理後之乙二胺廢水生物可分解度亦有所提升,將有助於後端生物處理單元之操作效率。
The objectives of this study were to use a combination of ultrasound and Fenton process, named as Sono-Fenton process, to degrade the non-biodegradable ethylenediamine wastewater and investigate the effects of different reaction parameters such as aeration, H2O2 (0 - 200 mg L-1), Fe2+ (5 - 50 mg L-1), reaction temperatures (20 – 50oC) and single/continueous dosing method, on the degradation and biodegradability (BOD5/COD) change of ethylenediamine wastewater. Experimental results indicated that the degradation of ethylenediamine, removal of total organic carbon (TOC) and biodegradability were 20%, 3% and 0.23, respectively, where the ultrasound/H2O2 experiments were carried out at ethylenediamine concentration of 50 mg L-1, pH 3 and H2O2 of 100 mg L-1 within 60 mins. As the air aeration (200 ml min-1) was conducted with the ultrasound/H2O2 process, i.e., ultrasound/air/H2O2, ethylenediamine degradation, TOC removal and biodegradability were 22%, 3% and 0.3, respectively, which wer slightly higher than those of ultrasound/H2O2 process. It was found that higher the concentration of Fe2+, higher the degradation of ethylenediamin (39%), TOC removal (10%) and biodegradability (0.71) in Sono-Fenton experiments, which was much better than ultrasound/H2O2 experiments. Increasing the reaction temperatures were worthless in the increase of ethylenediamine degradation by Sono-Fenton process. As the experiments were operated at 50oC, degradation of ethylenediamin and TOC removal were 18% and 4%, respectively. The above data were lower than those at 25oC. During the Sono-Fenton experiments, a continuous H2O2 dosing procedure could be used to replace the batch H2O2 dosing procedure. In continuous H2O2 dosing procedure, TOC removal increased to 13%, and ethylenediamine degradation and biodegradability were e% and 0.f, which were better than batch H2O2 dosing procedure. Experimental data indicated that the degradation of ethylenediamine by ultrasound/H2O2 or Sono-Fenton process followed the first-order kinetic model. Reaction rate constants were affected by the reaction temperature and the addition of H2O2 and Fe2+; the maximum reaction rate constant was 7.3×10-3 min-1. Based on the results shown in this study, part of ethylenediamine can be degraded by Sono-Fenton process coupling with the increase of biodegradability. Therefore, the Sono-Fenton procees can be used as the pretreatment of ethylenediamine wastewater to enhance the operation efficiency for further biological treatment units.
目 錄
頁次
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 高級氧化程序 3
2.2 Sono-Fenton 氧化程序 5
2.3 Sono-Fenton 程序操作參數之影響 6
2.3.1 超音波操作頻率的影響 7
2.3.2 鐵的種類與劑量之影響 9
2.3.2.1 Fe2+ 的應用 9
2.3.2.2 Fe3+ 的應用 11
2.3.2.3 Fe0 的應用 11
2.3.2.4 劑量的影響 13
2.3.3 pH之影響 15
2.3.4 溫度之影響 18
2.4 Sono-Fenton 氧化之動力學19
2.5 乙二胺之基本特性 20
第三章 實驗方法與步驟 22
3.1 實驗概述 22
3.2 實驗裝置 23
3.3 實驗參考設計 24
3.4 分析項目與方法 24
3.4.1 乙二胺分析方法 25
3.4.2 總有機碳分析方法 27
3.4.3 過氧化氫分析方法 27
3.4.4 化學需氧量分析方法 28
3.4.5 生化需氧量分析方法 28
3.5 實驗藥品 29
3.6 品質保證與品質管制 30
3.6.1 檢量線製備 30
3.6.2 品質管制 32
第四章 結果與討論 34
4.1 曝氣之影響 34
4.2 H2O2 加入量之影響 39
4.3 Fe2+ 加入量之影響 44
4.4 不同反應溫度之影響 50
4.5 批次加藥與連續加藥程序之差異性 55
4.6 乙二胺之反應動力模式 61
第五章 結論與建議 63
5.1 結論 63
5.2 建議 65
參考文獻 66

Arnold, W.A., Roberts,A.L.,“Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe0 particles,” Environmental Science & Technology , Vol. 34, No. 9, 2000, pp. 1794–1805.
Behnajady, M. A., Modirshahla, N., Shokri, M., Vahid, B., “Effect of operational parameters on degradation of Malachite Green by ultrasonic irradiation,” Ultrasonics Sonochemistry, Vol. 15, No. 6, 2008, pp. 1009–1014.
Bremner, D. H., Carlo, S. D., Chakinala, A. G., Cravotto, G.,“Mineralisation of 2,4-dichlorophenoxyacetic acid by acoustic or hydrodynamic cavitation in conjunction with the advanced Fenton process,” Ultrasonics Sonochemistry, Vol. 15, No. 4, 2008, pp. 416–419.
Chen, W.S., Huang, G.C., “Sonochemical decomposition of dinitrotoluenes and trinitrotoluene in wastewater,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 868–874.
Dai, Y., Li, F., Ge, F., Zhu, F., Wu, L., Yang, X., “Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron,” Journal of Hazardous Materials B, Vol. 137, No. 3, 2006, pp. 1424–1429.
Drijvers, D., VAN Langenhove, H., Beckers, M., “Decomposition of phenol and trichloroethylene by the ultrasound/H2O2/CuO process,” Warer Research, Vol. 33, No. 5, 1999, pp. 1187–1194.
Dükkanc, M., Gündüz, G., “Ultrasonic degradation of oxalic acid in aqueous solutions,” Ultrasonics Sonochemistry, Vol. 13, No. 6, 2006, pp. 517–522.
Ghodbane, H., Hamdaoui, O., “Degradation of Acid Blue 25 in aqueous media using 1700 kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H2O2 combinations,” Ultrasonics Sonochemistry, Vol. 16 , No. 5, 2009, pp. 593–598.
Gulkaya, İ., Surucu, G. A., Dilek, F. B.,“Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater,” Journal of Hazardous Materials B, Vol. 136 , No. 3, 2006, pp. 763–769.
Guo, Z., Zheng, Z., Zheng, S., Hu, W., Feng, R.,“Effect of various sono-oxidation parameters on the removal of aqueous 2,4-dinitrophenol”, Ultrasonics Sonochemistry, Vol. 12, No. 6, 2005, pp. 461–465.
Gunale, T. L., Mahajani, V. V., “Studies in mineralization of aqueous aniline using Fenton and wet oxidation (FENTWO) as a hybrid process,” Journal of Chemical Technology and Biotechnology, Vol. 82, No. 1, 2007, pp. 108–115.
Hoffmann, M. R., Hua, I., Höchemer, R., “Application of ultrasonic irradiation for the degradation of chemical contaminants in water,” Ultrasonics Sonochemistry , Vol. 3, No. 3, 1996, pp. S163–S172.
Joseph, C. G., Puma, G. L., Bono, A., Krishnaiah, D.,“Sonophotocatalysis in advanced oxidation process: A short review,”Ultrasonics Sonochemistry, Vol. 16, No. 5, 2009, pp. 583-589.
Kavitha, V., Palanivelu, K.,“The role of ferrous ion in Fenton and photo-Fenton process for the degradation of phenol, ” Chemosphere, Vol. 55 , No. 9, 2004, pp. 1235–1243.
Kavitha, V., Palanivelu, K.,“Destruction of cresols by Fenton oxidation process,” Water Research, Vol. 39 , No. 13, 2005, pp. 3062–3072.
Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K., Yobiko, Y.,“Sonochemical degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxins in aqueous solution with Fe(III)/UV system,” Chemosphere, Vol. 69 , No. 8, 2007, pp. 1261–1266.
Kidak, R., Ince, N.H., “Catalysis of advanced oxidation reactions by ultrasound: A case study with phenol,” Journal of Hazardous Materials, Vol. 146 , No. 3, 2007, pp. 630–635.
Kiwi, J., Lopex, A., Nadtochenko, A. V.,“Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl-),” Environmental Science & Technology, Vol. 34 , No. 11, 2000, pp. 2162–2168.
Kruus, P., Burk, R. C., Entezari, M. H., Otson,R.,“Sonication of aqueous solutions of chlorobenzene,” Ultrasonics Sonochemistry,, Vol. 4 , No. 3, 1997, pp. 229–233.
Kormann, C., Mahnemann, D. W. and Hoffmann, M. R. (1988) Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. Environ. Sci. Technol., 22(5), 798-806.
Liang, J., Komarov, S., Hayashi, N. and Kasai, E. “Improvement in sonochemical degradation of 4-chlorophenol by combined use of Fenton-like reagents,”Ultrasonics Sonochemistry, Vol. 14, No. 2, 2007, pp. 201-207.
Li, J. T., Li, M., Li, H. J. and Sun, H. W. “Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation,”Ultrasonics Sonochemistry, Vol. 14, No. 2, 2007, pp. 241-245.
Lin, J. G. and Ma, Y. S. “Magnitude of effect of reaction parameters on 2-chlorophenol decomposition by ultrasonic process”. Journal of Hazardous Materials B, Vol. 66, No. 3, 1999, pp. 291-305.
Lin, J. G. and Ma, Y. S. “Oxidation of 2-chlorophenol in water by an ultrasound/Fenton method”. Journal of Environmental Engineering, Vol. 126, No. 2, 2000, pp. 130-137.
Liu, H., Li, G., Qu, J., Liu, H., “Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound”, Journal of Hazardous Materials, Vol. 144 , No. 1-2, 2007, pp. 180–186.
Luo, T., Ai, Z., and Zhang, L.,“Fe@Fe2O3 core-shell nanowires as iron reagent. 4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis,” Journal of Physical Chemistry C, Vol. 112 , No. 12, 2008, pp. 8675–8681.
Ma, Y. S., Kumar, M. and Lin, J. G. “Degradation of carbofuran-contaminated water by Fenton process.”Journal of Environmental Science and Health, Part A, Vol. 44, No. 9, 2009, pp. 914-920.
Ma, Y.-S and Sung, C.-F., “Investigation of carbofuran degradation by ultrasonic process,” Sustainable Environment Research, Vol. 20, No. 4, 2010, pp. 213-219.
Ma, Y. S., Sung, C.-F., Lin, J. G. “Degradation of carbofuran in aqueous solution by ultrasonic and Fenton processes: Effect of system parameters and kinetic study,”Journal of Hazardous Materials, Vol. 178, No. 1-3, 2010, pp. pp.320-325.
Madhavan, J., Kumar, P. S. S., Anandan, S., Grieser, F., Ashokkumar, M.,“Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+,” Journal of Hazardous Materials, Vol. 177, No. 1-3, 2010, pp. 944–949.
Mantha, R., Taylor, K. E., Biswas, N., Bewtra, J. K., “A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater,” Environmental Science & Technology, Vol. 35 , No. 15, 2001, pp. 3231–3236.
Minero, C., Lucchiari, M., Vione, D., Maurino, V., “Fe(III)-Enhanced sonochemical degradation of methylene blue in aqueous solution,” Environmental Science & Technology, Vol. 39, No. 22, 2005, pp. 8936-8942.
Momani, F. A., Sans, C., Esplugas, S., “A comparative study of the advanced oxidation of 2,4-dichlorophenol,” Journal of Hazardous Materials B, Vol. 107 , No. 3, 2004, pp. 123–129.
Namkung, K. C., Burgess, A. E., Bremner,D. H., Staines,H., “Advanced Fenton processing of aqueous phenol solutions: A continuous system study including sonication effects,” Ultrasonics Sonochemistry, Vol. 15 , No. 3, 2008, pp. 171–176.
Nam, S.N., Han, S.K., Kang, J.W., Choi, H.,“Kinetics and mechanisms of the sonolytic destruction of non-volatile organic compounds: investigation of the sonochemical reaction zone using several OH- monitoring techniques,” Ultrasonics Sonochemistry, Vol. 10, No. 3, 2003, pp. 139–147.
Neyens, E. and Baeyens, J., “A review of classic Fenton’s peroxidation as an advanced oxidation technique,”Journal of Hazardous Materials B, Vol. 98, No. 1-3, 2003, pp. 33-50.
Oliveira, R., Almeida, M. F., Santos, L. and Madeira, L. M., “Experimental Design of 2,4-Dichlorophenol Oxidation by Fenton’s Reaction,”Industrial & Engineering Chemistry Research, Vol. 45, No. 4, 2006, pp. 1266-1276.
Oturan M. A., Sires I., Oturan N., Perocheau S., Laborde J. L. and Trevin S. “Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water,”Journal of Electroanalytical Chemistry, Vol. 624, No. 1-2, 2008, pp. 329-332.
Petrier, C., Jiang, Y., Lamy, M.-F., “Ultrasound and environment: sonochemical destruction of chloromatic derivatives,” Environmental Science & Technology, Vol. 32, No. 1, 1998, pp. 1216.
Pignatello, J. J, Oliveros, E., MacKay, A., “Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry,” Environmental Science & Technology, Vol. 36 , No. 1, 2006, pp. 1–84.
Pradhan, A. A., Gogate, P.R., “Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry,” Journal of Hazardous Materials, Vol. 173, No. 1-3, 2010, pp. 517–522.
Qiu, G., Nie,M., Wang,Q.,“Ultrasonically initiated emulsion polymerization of styrene in the presence of Fe2+,” Ultrasonics Sonochemistry, Vol. 15, No. 5, 2008, pp. 269–273.

Riesz, P., Kondo, T., Krishna, C.M., “Sonochemistry of volatile and non-volatile solutes in aqueous solutions: e.p.r. and spin trapping studies,”Ultrasonics , Vol. 28, No. 5, 1990, pp. 295–303.
Silva, M. R. A., Trov´o, A. G. and Nogueira, R. F. P., “Degradation of the herbicide tebuthiuron using solar photo-Fenton process and ferric citrate complex at circumneutral pH,”J. of Photochemistry and Photobiology, Vol. 191, No. 2-3, 2007, pp. 187-192.
Son, H. S., Choi, S. B., Khan, E., Zoh, K.D.,“Removal of 1,4-dioxane from water using sonication: Effect of adding oxidants on the degradation kinetics,” Water Research, Vol. 40, No. 4, 2006, pp. 692 – 698.
Sun, H. J., Sun, S. P., Sun, J. Y., Sun, R. Z., Qiao, L. P., Gua, H. Q. and Fan, M. H., “Degradation of azo dye acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation,”Ultrasonics Sonochemistry, Vol. 14, No. 6, 2007, pp. 761-766.
Stavarache, C., Yim, B., Vinatoru, M., Maeda, Y., “Sonolysis of chlorobenzene in Fenton-type aqueous systems,” Ultrasonics Sonochemistry, Vol. 9, No. 6, 2002, pp.291–296.
Torres, R. A., Abdelmalek, F., Combet, E., Petrier, C. and Pulgarin, C., “A comparative study of ultrasonic cavitation and Fenton’s reagent for bisphenol A degradation in deionised and natural waters,”Journal of Hazardous Materials, Vol. 146, No. 3, 2007, pp. 546-551.
Wang, X., Yao, Z., Wang, J., Guo, W., Li, G., “Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation,” Ultrasonics Sonochemistry, Vol. 15, No. 1, 2008, pp. 43–48.
Yim, B., Yoo, Y., Maeda, Y., “Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III), ” Chemosphere , Vol. 50, No. 8, 2003, pp. 1015–1023.
Zhang, H., Choi, H. J., Huang, C. P., “Optimization of Fenton process for the treatment of landfill leachate,”Journal of Hazardous Materials B, Vol. 125, No. 1-3, 2005, pp. 166 – 174.
Zhang, H., Fu, H., Zhang, D., “Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process,”Journal of Hazardous Materials, Vol. 172, No. 2-3, 2009, pp. 654 – 660.
Zhang, H., Zhang J., Zhang, C., Liu, F. and Zhang, D. “Degradation of C.I. Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation,”Ultrasonics Sonochemistry, Vol. 16, No. 3, 2009, pp. 325-330.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top