跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧永雁
研究生(外文):Yung-Yan Tang
論文名稱:Sol-gel法製備TiO2薄膜降解氣相丙酮之研究
論文名稱(外文):Prepared TiO2 film by sol-gel method oxidation of gaseous acetone
指導教授:張秋萍張秋萍引用關係
指導教授(外文):Chiu-Ping Chang
學位類別:碩士
校院名稱:元培科技大學
系所名稱:環境工程衛生研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:溶膠凝膠法TiO2薄膜鍛燒溫度鍛燒時間丙酮
外文關鍵詞:Sol-gel methodTiO2 thin filmCalcination temperatureCalcination timeAcetone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用簡單的溶膠凝膠(sol-gel)法製備二氧化鈦(TiO2)薄膜。以352 nm之紫外光作為光源催化氧化去除氣相丙酮。觸媒以掃描電子顯微鏡(Scanning Electron Microscope, SEM)觀察觸媒型態,X光粉末繞射儀(X-Ray Powder Diffractoion, XRD)觀察晶體種類,未鍛燒至鍛燒400℃之TiO2晶相以銳鈦礦相為主,鍛燒溫度超過500℃有金紅石相開始出現。觸媒製備過程中,TTIP(Titanium(Ⅳ)- isoproylat)與IPA(Isopropyl alcohol)比例、鍛燒溫度與鍛燒時間對觸媒活性影響甚鉅;隨著TTIP/IPA添加比例(3:3、3:5、3:7和3:10)越高活性越高,但在TTIP/IPA比例為3:10時活性開始下降;TiO2經鍛燒後,活性隨鍛燒溫度越高活性越好,但鍛燒溫度超過500℃鍛燒,活性開始下降,丙酮去除率也隨之降低,隨著鍛燒時間越長觸媒活性也越好,但鍛燒時間超過5小時,活性反而開始下降;添加界面活性劑 (Polyethylene glycol,PEG)以添加分子量為600活性最佳,但與未添加PEG做比較則後者活性較佳,所以在本研究添加PEG無法增加氣相丙酮之去除效率。以化學式來看1莫爾之丙酮完全氧化成CO2可達到3莫爾,但本研究兩者比例只達1.8~2.2,大約有27%~40%之丙酮未完全氧化。本研究最佳製備觸媒條件為TTIP:IPA=3:7和鍛燒溫度為400℃鍛燒4小時之薄膜觸媒活性為最佳。
In this research, we used sol-gel process in preparing TiO2 film. TiO2 was catalyzed by UV light ( = 652 nm) to remove gaseous acetone. The characterization of catalysts was observed with scanning electron microscope (SEM) for their size and X-ray diffraction (XRD) for phase of crystal. Crystalline phase of TiO2 is showed in anatase phase when calcined temperature is lower than 500 ℃. The presence of ruitile phase was observed when the calcined temperature is at 500℃and 600℃. In the process of catalyst preparation, the effect of the ratio of titanium -isoproylat (TTIP) to isopropyl alcohol (IPA), the temperature and time of calcinations on the activity of catalyst was investigated. Following the decrease of ratios of TTIP/IPA the better the activity, however, the activity lowered when the TTIP/IPA ratio reached 3:10. After calcination, TiO2 activity gets better following the increase of calcinations temperature, however, when the temperature is higher than 400℃, the activity begins to drop, and the acetone removal rate is reduced as well. Following the extension of calcination time, the activity of catalyst gets better, however, when the calcination time is longer than 5 hours, the activity turns down. Addition of surfactant Polyethylene Glycol (PEG) is best to the activity when the molecular weight of surfactant is 600, yet, when comparing with that without adding PEG, the later shows better activity. So, in the research, it is found that adding PEG is unable to increase the removal efficiency of gaseous acetone. It can be seen from the chemical formula that when acetone is fully oxidized, the mole ratio of CO2 to acetone is 3, but in our research, the ratio between them is only between 1.8 and 2.2, and approximately 27% to 40% acetone is not totally oxidized. In this research, the photocatalyst shows the best activity when it is prepared by sol-gel process at TTIP: IPA=3:7, calcinations temperature of 400℃ for 4 hours.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究架構 2
第二章 文獻回顧 4
2-1揮發性有機物(VOCs)介紹 4
2-1-1 揮發性有機物之定義 4
2-1-2 揮發性有機物之來源 5
2-1-3 揮發性有機物之處理方式 5
2-1-4 丙酮之特性 7
2-1-5 丙酮對於人體之影響 9
2-2 半導體性質 10
2-3 光觸媒簡介 13
2-4二氧化鈦特性與製備 15
2-5光催化反應機制 18
2-6 觸媒影響反應因子 21
2-6-1 觸媒製備方式 21
2-6-2 鍛燒溫度與時間 22
2-6-3 觸媒塗覆方式 23
2-6-4 添加界面活性劑 24
第三章 實驗設備與方法 27
3-1 實驗材料 27
3-1-1 實驗藥品 27
3-1-2 商用觸媒 28
3-2 觸媒薄膜製備 31
3-2-1 觸媒製備 31
3-3 光觸媒性質分析 32
3-3-1 掃描式電子顯微鏡 32
3-3-2 X光繞射分析 32
3-4 光催化實驗 32
3-4-1 氣體產生裝置 33
3-4-2 光催化反應裝置 36
3-5 分析裝置 39
3-5-1氣相層析儀/火焰離子偵測器(GC/FID): 39
3-5-2霍氏紅外線吸收光譜儀(FTIR): 39
第四章 結果與討論 40
4-1 觸媒特性 40
4-1-1 X光繞射儀分析 40
4-1-2 掃瞄式電子顯微鏡分析 44
4-2 背景實驗 53
4-2-1 穩定實驗 53
4-2-2 光解實驗 54
4-2-3 吸附實驗 55
4-3 Sol-gel塗覆薄膜 56
4-3-1 TTIP/IPA不同比例 56
4-3-2 不同鍛燒時間 58
4-3-3 不同鍛燒溫度 60
4-3-4 添加界面活性劑 62
4-4 TiO2粉末塗覆薄膜 64
4-5 與商用觸媒之比較 65
4-6 最終產物CO2的生成 66
4-6-1 薄膜不同比例之CO2生成 66
4-6-2 不同鍛燒時間 68
4-6-3 不同鍛燒溫度 70
第五章 結論與建議 72
參考文獻 73
英文部分 73
中文部份 77


英文部分
Arconada, N., Duran, A., Suarez, S., Portela, R., Coronado, J.M., Sanchez,B., Castro, Y., “Synthesis and photocatalytic propertues of dense and porous TiO2-anatase thin films prepared by sol-gel,” Applied Catalysis B: Environmental, 86, 2009, pp. 1-7.
Ao C.H., Leung M.K.H., Lam C.W., Dennis Y.C., Lilian L.P., W.C. Yamc, S.P. Ng,” Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UVA and visible-light irradiation”, Chemical Engineering Journal 129 ,2007,pp. 153–159
An Taicheng, Liu Jikai, Li Guiying , Zhang Shanqing , Zhao Huijun , Zeng Xiangying , Sheng Guoying , Fu Jiamo” Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2” Applied Catalysis A: General 350 ,2008, pp.237–243
Beck JS., Vartuli JC., Roth WJ., Leonowicz ME., Kresge CT., Schmitt KD., Chu CTW., Olson DH. and Sheppard EW., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society 114,1992,pp.10834-10843
Bing Guo, Zhaolin Liu, Liang Hong, Huixin Jiang,” Sol gel derived photocatalytic porous TiO2 thin films” Surface & Coatings Technology 198 ,2005,pp. 24– 29
Chao-Yin Kuo,* and Han-Yu Lin” PHOTOCATALYTIC ACTIVITY OF TiO2 PREPARED BY ADDING POLYETHYLENEGLYCOL” React.Kinet.Catal.Lett.Akadémiai Kiadó, Budapest Vol. 96, No. 1, 2009,pp.147−155
Ching,W.H. Michael Leung, Dennis Y.C. Leung,” Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality”, Solar Energy 77 ,2004,pp.129–135
Chen Yongjun, Stathatos Elias, Dionysios D. Dionysiou,” Microstructure characterization and photocatalytic activity of mesoporousTiO2 films with ultrafine anatase nanocrystallites”, Surface & Coatings Technology 202 ,2008 ,pp.1944–1950
Chen Yongjun, Dionysios D. Dionysiou,” TiO2 photocatalytic films on stainless steel: The role of Degussa P-25 in modified sol–gel methods”, Applied Catalysis B: Environmental 62 ,2006,pp. 255–264
Devahasdin, S., Fan, C., Jr., Li, K., Chen, D. H., “TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics,” Journal of Photochemistry and Photobiology A: Chemistry, 156, 2003, pp. 161-170.
Daniel Vildozo , Corinne Ferronato, Mohamad Sleiman, Jean-Marc Chovelon,” Photocatalytic treatment of indoor air: Optimization of 2-propanol removal using a response surface methodology (RSM)”, Applied Catalysis B: Environmental,94,2010,pp. 303–310.
Ding Z., Lu,G.Q.,and Greenfield P.F.,A Kinetic Study on Photocatalytic Oxidation of Phenol in Water by Silica-Dispersed Titania Nanoparticles,”, J. Colloid Interface Sci., 232, 2000,pp.1-9.
Deping Xu, Zheng-Hong Huang, Feiyu Kang , M. Inagaki, T.-H. Ko “Effect of heat treatment on adsorption performance and photocatalyticactivity of TiO2-mounted activated carbon cloths” Catalysis Today 139 ,2008,pp. 64–68
Fujishma, A. Honda,K. “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 1972,pp.37.
Fujishima, A., Rao, T.N., Truk, D.A., Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 2000, pp. 1.
Fujishima, A., Hashoimoto K., Watanabe T., “TiO2 Photocatalysis Fundamentals and Application”, BKC, Inc, 1999,Japan,.
Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D.W.,”Environmental applications of semiconductor photocatalysis”, Chem. Rev., 95, 1995, pp.69-96.
Jiaguo Yu, Xiujian Zhao, Qingnan Zhao” Photocatalytic activity of
nanometer TiO2 thin films prepared by the sol–gel method”, Materials
Chemistry and Physics 69,2001,pp. 25–29
Khan FI, Ghoshal AKr. “Removal of volatile organic compounds from polluted air. “ Journal of Loss Prevention in the Process Industries Vol.13,2000,pp.527-545.
Keiichi T., Capule, M. F. V., Hisanage, T., 1991, ”Effect of crystallinity of TiO2 on Photocatalysis action.”, Chem. Phys. Lett., 187, pp.73-76.
Legrini, O., Oliveros, E., Braun, A. M.,”Photochemical processes for water treatment”, Chem. Rev., 93, 1993,pp.671-698.
Liqiang, J.,Xiaojin, S.,Weimin, C.,Zili, X.,and Yaoguo,D.“The preparation and characterization ofnanoparticle TiO2/Ti films and their photocatalytic activity,”Journal of Physics and Chemistry of Solids,64, 2003,pp.615-623.
Murid Hussain, Nunzio Russoa, Guido Saracco,” Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles,” Chemical Engineering Journal,166,2011,pp.138-149.
Parkin, I.P. and Palgrave, r.g., “Self-cleaning coatings,” Journal of Materials Chemistry, 15, 2005, pp. 1689-1695.
Raupp, G.B. and Junio, C.T., “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci., 72, 1993, pp.321.
Wei S.,Zhang S.,Liu Z., Wang C., Mao Z.,“Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts”, I NTERNATI ONAL JOURNAL OF HYDROGEN ENERGY 33 , 2008,pp. 1112 – 1117.
Sokmen, M., Allen, D. W., Hewson, A. T., and Clench, M. R.,”Photocatalysis oxidation degradation of 2-methylthiophene in suspensions of TiO2: identification of intermediates and degradation pathways,”, J. Photochem. Photobiol., A., 141, 2001, pp.63-67.
Stumm,W., Wiley John” Chemistry of the Solid-Water Interface”, 1992,New York.
San, N., Hatipoglu, A., Kocturk, G., and Cinar, Z., “Photocatalytic degradation of 4-nirophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates,.”, J. Photochem. Photobiol., A., 146, 2002,pp.189-197.
Shigeru Ikeda , Hideyuki Kobayashi, Yoshimitsu Ikoma, Takashi Harada,Suzuko Yamazaki, Michio Matsumura,” Structural effects of titanium(IV) oxide encapsulated in a hollow silica shell on photocatalytic activity for gas-phase decomposition of organics”, Applied Catalysis A: General ,369 ,2009,pp.113–118.
Shaojing Bu, Zhengguo Jin, Xiaoxin Liu, Lirong Yang, Zhijie Cheng.,” Fabrication of TiO2 porous thin films using peg templates andchemistry of the process”, Materials Chemistry and Physics 88,2004,pp. 273–279
Samari Jahromi H. , Taghdisian H., Afshar S. , Tasharrofi S. ,” Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film” Surface & Coatings Technology 203 ,2009,pp. 1991–1996
Shaozheng Hu, AnjieWang, XiangLi a,b, HolgerL¨owe,” Hydrothermalsynthesisofwell-dispersedultrafineN-dopedTiO2 nanoparticleswithenhancedphotocatalyticactivityundervisiblelight”, Journal of Physics and Chemistry of Solids 71 ,2010, pp.156–162
Zeep, R. G., “Factors Affecting the photochemical Treatment of Hazardous waste.”, Environ. Sci. Technol., 22, 1998, 256-257.
Zhu, Y., Zhang, L., Gao, C., Cao L., “The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor.”, J. Mater. Sci. Technol., 35, 2000, pp.4049-4054.












中文部份
劉國棟,「VOC管制趨勢產望」,工業污染防治,48期,1993
游振煥,「建物塗裝VOCs逸散特性之研究」,第二十一屆空氣污染控制技術研討會,2004
林敏男,「半導體作業環境中揮發性有機化合物氣相層析質譜儀分析 方法建立」,國立清華大學原子科學系碩士論文,1999
勞工安全衛生研究所,物質安全資料表
施敏原著,張俊彥譯著,「半導體元件物理與製作技術」,高立圖書有限公司,民國86年,1-78頁。
施敏原著,馮武雄譯著,「半導體元件物理學」,國立編譯館中央圖書,民國79年,5-61頁。
李定粵,「觸媒的原理與應用」,民國88年
高濂,鄭珊,張青紅「奈米光觸媒」,五南圖書出版股份有限公司,民國93年,34-74頁。

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top