跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫舒瑜
研究生(外文):WenShuYu
論文名稱:頭頸癌病人放射治療皮膚表面劑量評估
論文名稱(外文):The Skin Surface Dose Assessment of Radiation Therapy for Head and Neck Cancer Patients
指導教授:黃文濤黃文濤引用關係
指導教授(外文):HuanWenTao
學位類別:碩士
校院名稱:元培科技大學
系所名稱:放射技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
畢業學年度:99
語文別:中文
論文頁數:54
中文關鍵詞:頭頸癌表面劑量體表輪廓EBT2膠片人體組織等效物質
外文關鍵詞:head and neck cancersurface dosebody contourEBT2 filmbolus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究目的為探討頭頸癌放射治療時體表輪廓改變下,對於皮膚表面劑量之影響。一般而言,頭頸癌病患進行放射治療時,常造成之吞嚥困難或疼痛等副作用,導致病患體重下降進而發生體表輪廓改變,此現象可能使照射部位皮膚組織位置向身體內側移位,貼近原先的高劑量區,而有皮膚輻射效應增加之疑慮。
本研究主要分為兩部分:一、分析三種不同劑量計(平行板游離腔、TLD-100H、EBT2膠片)用於表面劑量測量之差異。二、利用不同型態的固態假體(cheese、Rando)及兩種治療計畫方式(四角度Box技術、IMRT技術),在假體表面鋪上四種不同厚度之人體組織等效物質bolus:0.3 cm、0.5 cm、1 cm、1.5 cm來模擬病患外形輪廓改變,並利用TLD-100H、EBT2膠片量測不同輪廓下皮膚劑量之變化。並利用變異數統計分析(ANOVA),以探討因外形改變對於皮膚表面劑量之影響。實驗的第一部分的結果顯示,以平行板游離腔作為參考,EBT2膠片量測值與其相近,平均差異約 1~2%,而TLD-100H的量測值平均約比平行板游離腔高估10%。實驗第二部分中,cheese 假體配合Box技術部分,表面劑量與體表厚度改變並無明顯差異(p>0.05),量測值約落在100 cGy~120 cGy之間;而IMRT部分,平均量測值較Box略高(120 cGy~150 cGy),但仍與體表厚度改變無關(p>0.05)。而在Rando假體部分,量測值範圍落在150 cGy~190 cGy,體表厚度改變超過1 cm時則有顯著差異(p<0.05)。由本研究結果可得知EBT2膠片為量測皮膚表面劑量之有效工具。在多數的狀況下,體表輪廓的改變並不會造成皮膚表面劑量的變化,但當利用Rando假體量測時,由於回散射及熱塑型面膜所造成的增建效應(build up effect)等影響,當體表輪廓改變較大時則會造成表面劑量顯著差異。

The purpose of this study was to assess skin surface dose due to body contour change from radiation therapy of head and neck cancer. Oropharyngalgia, difficult swallow, taste lost and epithelial cell damage on gastrointestinal tract caused by radiation effect would always reduce body weight of the patients during radiotherapy. This phenomenon might displace skin tissue to high dose region and would increase skin radiobiological effect. The study divided into two major parts: (1) analyzing the surface dose difference from three types of dosimeter (i.e. plane parallel ionization chamber, TLD-100H or EBT2 film) and (2) using tissue equivalent materials (bolus) and solid phantom (cheese or Rando phantom) to simulate the variation of patient contour. Therefore, to simulate the skin dose change, the solid phantom attached with different slide (0.3 cm, 0.5 cm, 1 cm, 1.5 cm) bolus were irradiated with 6 MV photon from Elekta Synergy accelerator in 4 irradiate angles (Box technique) or 7 irradiate angles (IMRT technique). The surface dose measurements by EBT2 film compared with ionization chamber (<2% variation) are more coincident than that of TLD-100H (~10% variation) compared with ionization chamber. For cheese phantom, no significant differences (p>0.05) are observed for surface dose (ds) to maximum depth dose (dmax) ratio (ds/dmax) in Box and IMRT techniques among dose range 100 cGy~120 cGy. For Rando phantom, however, significant differences (p<0.05) are observed among dose range 150 cGy~190 cGy when the thickness of bolus were higher than that of 1 cm. We conclude that EBT2 film is suitable to skin surface dose measurement than that of TLD-100H and extreme body contour change causes significant change of skin surface dose due to backscattering of bolus and thermoplastic mask.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖次 VII
表次 IX
第1章 緒論 1
1.1 研究動機及目的 1
1.2 文獻回顧 3
1.3 研究流程 8
1.4 論文架構 9
第2章 研究設備與原理 10
2.1 醫用直線加速器 10
2.3 熱發光劑量計之原理 12
2.3.1 熱發光劑量計 13
2.3.2 回火設備及計讀系統 13
2.4 Gafchromic EBT膠片之作用原理 15
2.4.1 Gafchromic EBT膠片之結構與組成 16
2.4.2 Gafchromic EBT膠片之特性 18
2.4.3 計讀系統 19
2.5 假體 20
2.5.1 固態水假體 20
2.5.2 圓柱型固態水假體 21
2.5.3 Anthropomorphic Rando® 擬人假體 21
2.6 人體組織等效填充物 bolus 22
第3章 實驗步驟與方法 23
3.1 劑量計之校正 23
3.1.1 熱發光劑量計之校正 23
3.1.1.1 穩定度篩選 23
3.1.1.2 劑量線性度 24
3.1.2 Gafchromic EBT2膠片之校正 24
3.1.2.1 劑量線性度 24
3.2 表面劑量量測工具評估 25
3.2.1 不同SAD之表面劑量量測 25
3.2.2 不同射束角度之表面劑量量測 27
3.2.3 不同照野大小之表面劑量量測 28
3.3 電腦斷層影像擷取 28
3.3.1 Cheese假體 28
3.3.2 Anthropomorphic Rando®假體 29
3.4 治療計劃系統 30
3.4.1 四角度(Box)治療計劃 31
3.4.2 強度調控放射治療治療計劃 31
3.5 不同bolus厚度之表面劑量量測 33
3.5.1 Cheese假體之表面劑量量測 33
3.5.2 Anthropomorphic Rando®假體之表面劑量量測 35
第4章 結果與討論 37
4.1 熱發光劑量計之校正 37
4.1.1 穩定度篩選 37
4.1.2 劑量線性度 37
4.2 Gafchromic EBT2膠片之校正 38
4.2.1 劑量線性度 38
4.3 表面劑量量測工具評估 39
4.3.1 不同SAD之表面劑量量測 39
4.3.2 不同射束角度之表面劑量量測 40
4.3.3 不同照野大小之表面劑量量測 41
4.4 不同bolus厚度之表面劑量量測結果 43
4.4.1 Cheese假體之表面劑量量測 43
4.4.1.1 四角度Box技術 43
4.4.1.2 IMRT技術 43
4.4.2 Anthropomorphic Rando®假體之表面劑量量測 45
第5章 結論與未來展望 49
5.1 結論 49
5.2 未來展望 49
參考文獻 50


1. Nutting C, Dearnaley DP, Webb S, Intensity modulated radiation therapy: a clinical review. Br. J. Radiol. 2000; 73: 459-469.
2. Xia P, Fu KK, Wong GW, Akazawa C, Verhey LJ, Comparison of treatment plans involving intensity modulated radiotherapy for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2000; 48: 329-337.
3. Huang D, Xia P, Akazawa P, Akazawa C, Quivey JM, Verhey LJ, Kaplan M, Lee N, Comparison of treatment plans using intensity modulated radiotherapy and three-dimensional conformal radiotherapy for paranasal sinus carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2003; 56: 158-168.
4. Turesson I, Thames H, Repair capacity and kinetics of human skin during fractionated radiotherapy: Erythema, desquamation and telangiectasia after 3 and five years follow up. Radiother. Oncol. 1989; 15: 169-188.
5. Denham JW, Peters LJ, Johansen J, Poulsen M, Lamb DS, Hindley A, Brien PCO, Spry NA, Penniment M, Krawitz H, Williamson S, Bear J, Tripcony L, Do acute mucosal reactions lead to consequential late reactions in patients with head and neck cancer? Radiother. Oncol. 1999; 52: 157-164.
6. Denham JW, Hamilton CS, Simpson SA, Ostwald PM, Brien MO, Kron K, Joseph DJ, Dear KBG, Factors influencing the degree of erythematous skin reaction in humans. Radiother. Oncol. 1995; 36: 107-120.
7. ICRP International Commission on Radiological Protection, The principles and general procedures for handling emergency and accidental exposures of workers, 1978; 28.
8. Pointon RCS, The Radiotherapy of Malignant Disease, 2nd ed. Springer-Verlag, Berlin, 1991.
9. Lee N, Chuang C, Quivey JM, Phillips TL, Akazawa P , Verhey LJ, Xia P, Skin toxicity due to intensity modulated radiotherapy for head and neck carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2002; 53: 630-637.
10. Whitton J, New values for epidermal thickness and their importance. Health Phys. 1973; 24: 1-8.
11. ICRP International Commission on Radiological Protection. Reference man: anatomical, physiological and metabolic characteristics, 1975; 23.
12. Hopewell JW, Biological effects of irradiation on skin and recommended dose limits, Radiat. Prot. Dosim. 1991; 39: 11-24.
13. ICRP International Commission on Radiological Protection. 1990; 60.
14. ICRU International Commission on Radiation Units and Measurements, Determination of dose equivalent resulting from external radiation sources. 1985; 39.
15. Lin JP, Chu TC, Lin SY, Liu MT, Skin dose measurement by using ultra-thin TLDs. Appl. Radiat. Isot. 2001; 55: 383-391.
16. Kim S, Liu CR, Zhu TC, Palta JR, Photon beam skin dose analyses for different clinical setups. Med. Phys. 1998; 25: 860-866.
17. Butson MJ, Yu PKN, Metcalfe PE, Extrapolated surface dose measurements with radiochromic film. Med. Phys. 1999; 26: 485-488.
18. Yu PKN, Cheung T, Butson MJ, Variations in skin dose using 6 MV or 18 MV x-ray beams. Australas. Phys. Eng. Sci. Med. 2003; 26: 78-80.
19. Devic S, Seuntjens J, Abdel-Rahman M, Evans M, Olivares M, Podgorsak EB, Vuong T, Soares CG, Skin dose measurement using radiochromic film in clinical applications. Med. Phys. 2006; 33: 1116-1124.
20. Ezzell GA, Galvin JM, Low D, Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee. Med. Phys. 2003; 30: 2089-2115.
21. Quacha KY, Morales J, Butson MJ, Measurement of radiotherapy x-ray skin dose on a chest wall phantom. Med. Phys. 2000; 27: 1675-1680.
22. Mutic S, Low DA, Superficial doses from serial tomotherapy delivery. Med. Phys. 2000; 27: 163-165.
23. Ishmael Parsai E, Shvydka D, Pearson D, Gopalakrishnan M, Feldmeier J, Surface and build-up region dose analysis for clinical radiotherapy photon beams. Appl. Radiat. Isot. 2008; 66: 1438–1442.
24. Qi ZY, Deng XW, Huang SM, Zhang L, He ZC, Li XA, Kwan I, Lerch M, Cutajar D, Metcalfe P, Rosenfeld A, In vivo verification of superficial dose for head and neck treatments using intensity-modulated techniques. Med. Phys.
2009; 36: 59-70.
25. Pai S, Reinstein LE, Gluckman G, The use of improved radiochromic film for in vivo quality assurance of high dose rate brachytherapy. Med. Phys. 1998; 25: 1217-1221.
26. Martin JB, Tsang C, Weak energy dependence of EBT gafchromic film dose response in the 50 kVp-10 MVp x-ray range. Appl. Radiat. Isot. 2006; 64: 60-62.
27. Tung S, Tsao C, Ho Y, Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage energies. Med. Phys. 2005; 32: 3350-3354.
28. Todorovic M, Fischer M, Cremers F, Thom E, Schmidt R. Evaluation of gafchromic EBT prototype B for external beam dose verification. Med. Phys. 2006; 33: 1321-1328.
29. Alexandra R, Alex V, David AJ, Characterization and real-time optical measurements of the ionizing radiation dose response for a new radiochromic medium. Med. Phys. 2005; 32: 2510-2516.
30. Su FC, Liu Y, Stathakis S, Shi C, Esquivel C, Papanikolaou N, Dosimetry characteristics of GAFCHROMIC® EBT film responding to therapeutic electron beams. Appl. Radiat. Isot. 2007; 65: 1187-1192.
31. Chung H, Jin H, Dempsey JF, Liu C, Palta J, Suh TS, Kim S, Evaluation of surface and build-up region dose for intensity modulated radiation therapy in head and neck cancer. Med. Phys. 2005; 32: 2682-2689.
32. AAPM TG-21, A protocol for the determination of absorbed dose from high-energy photon and electron beams. Med. Phys. 1983; 10: 741-771.
33. 張寶樹。醫用保健物理學,臺北市,國立編譯館。2001,174-316。
34. Miljanic S, Ranogajec-Komor M, Knezevic Z, Vekic, B, Main dosimetric characteristics of some tissue-equivalent TL detectors. Radiat. Prot. Dosim. 2002; 100: 437–442.
35. 許彬杰。翁寶山。實用固體熱發光劑量測定術。台北,合記圖書出版社,2002。
36. Rink A, Vitkin IA, David A, Jaffray Suitability of radiochromic medium for real-time optical measurements of ionizing radiation dose. Med. Phys. 2005; 32: 1140-1155.
37. Seuntjens J, Sham E, Precise radiochromic film dosimetry using a flat-bed document scanner. Med. Phys. 2005; 32: 2245-2252.
38. GAFCHROMIC® EBT2 self-developing fim for radiotherapy dosimetry. 2009.
39. Horowitz YS, The theoretical and microdosimetric basis of thermoluminescence and applications to dosimetry, Phys. Med. Biol. 1981; 26: 765-824.
40. Dong SL, Lo CC, Yeh YS, Chang KH, Chen HC, Lee JS, The calibration and linearity test of TLD-100H in low-level radiation exposure, Therapeut. Radiol. Oncol. 1997; 4: 215-221.
41. Troncalli AJ, Chapman J, TLD linearity vs. beam energy and modality. Med. Phys. 2002; 27: 295-296.
42. Kron T, Schneider M, Murray A, Mameghan H, Clinical thermoluminescence dosimetry: how to expectations and results compare? Radiother. Oncol. 1993; 26: 151-161.
43. Cheung T, Butson MJ, Yu PKN, Measurement of High Energy X-Ray Beam Penumbra with Gafchromic EBT Radiochromic Film. Med. Phys. 2006; 33: 2912-2914.
44. Sankar A, Ayangar KM, Nehru RM, Kurup PGG, Murali V, Enke CA, Velmurugan V, Comparison of Kodak EDR2 and Gafchromic EBT film for intensity modulated radiation therapy dose distribution verification. Med. Phys. 2006; 31: 273-282.
45. Henry WCL, Ho HW, Li SW, Lo SH, Hu YH, Li LC, Evaluation of the Dose Response of Gafchromic EBT Film for High Energy Photon Beams. Therapeut. Radiol. Oncol. 2007; 14: 189-196
46. Gerbi BJ, Khan F, Plane-parallel ionization chamber response in the build-up region of obliquely incident photon beams. Med. Phys. 1997; 24: 873-878.
47. Rawlinson JA, Arlen D, Newcombe D, Design of parallel plate ionchambers for buildup measurements in megavoltage photon beams. Med. Phys. 1992; 19: 641-648.
48. Jackson W, Surface effects of high-energy x-rays at oblique incidence. Br. J. Radiol. 1971; 44: 109-115.
49. Butson MJ, Yu PKN, Metcalfe PE, Extrapolated surface dose measurements with radiochromic film. Med. Phys. 1999; 26: 485-488.
50. Dogan N, Glasgow GP, Surface and build-up region dosimetry for obliquely incident intensity modulated radiotherapy 6 MV x-rays. Med. Phys. 2003; 30: 3091-3096.
51. Yokoyama S, Roberson P, Moran J, Litzenberg D, Fraass B, Build-up region dependence on photon dose delivery technique for IMRT. Med. Phys. 2002; 29: 1315.
52. Chiu-Tsao S, Schaart DR, Soares CG, Nath R, Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry. Med. Phys. 2007; 34: 4126-4157.
53. Zeidan OA, Stephenson SAL, Meeks SL, Wagner TH, Willoughby TR, Kupelian PA, Langen KM, Characterization and use of EBT radiochromic film for IMRT dose verification. Med. Phys. 2006; 33: 4064-4072.
54. Wilcox E, Daskalov G, Nedialkova L, Comparison of the Epson Expression 1680 flatbed and the Vidar VXR-16 Dosimetry PRO™ film scanners for use in IMRT dosimetry using Gafchromic and radiographic film. Med. Phys. 2007; 34:
41-48.
55. Wilcox E, Daskalov GM, Evaluation of GAFCHROMIC® EBT film for CyberKnife® dosimetry. Med. Phys. 2007; 34: 1967-1974.
56. Battum LJV, Hoffmans D, Piersma H, Heukelom S, Accurate dosimetry with GafChromic™ EBT film of a 6 MV photon beam in water: What level is achievable? Med. Phys. 2008; 35: 704-716.
57. Chiu-Tsao S, Medich D, Munro J, The use of new GAFCHROMIC® EBT film for I125 seed dosimetry in Solid Water® phantom. Med. Phys. 2008; 35: 3787-3799.
58. Soares C, New developments in radiochromic film dosimetry. Radiat. Prot. Dosim. 2006; 20: 100-106.
59. Butson MJ, Cheung T, Yu PKN, Megavoltage x-ray skin dose variation with an angle using grid carbon fibre couch tops. Phys. Med. Biol. 2007; 52: 485-492.
60. Price S, Williams M, Butson M, Metcalfe P, Comparison of skin dose between conventional radiotherapy and IMRT. Australas. Phys. Eng. Sci. Med. 2006; 29: 272-277.
61. Hadley SW, Kelly R, Lam K, Effects of immobilization mask material on surface dose. J. Appl. Clin. Med.Phys. 2005; 6: 61-67.
62. Roland TF, Stathakis S, Ramer R, Papanikolaou N, Measurement and comparison of skin dose for prostate and head and neck patients treated on various IMRT delivery systems. Appl. Radiat. Isot. 2008; 66: 1844-1849.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top