(3.236.214.19) 您好!臺灣時間:2021/05/10 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:胡信正
研究生(外文):Shing-Cheng Hu
論文名稱:新區隔自由配置階層排序法之建構與比較
論文名稱(外文):A Study of Alternative Models for Discriminating Efficiency Units in Free Disposal Hull
指導教授:鍾雲恭鍾雲恭引用關係
指導教授(外文):Yun-Kung Chung
學位類別:博士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:資料包絡分析自由配置階層效率區隔
外文關鍵詞:DEAFDHEfficiencyDiscriminating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
自從「效率衡量」的觀念由學者Farell (1975)提出後,學者Charnes et al. (1978)與Deprin et al. (1984)將此觀念應用線性規劃技術,分別假定凸性與非凸性之前提下,各自發展出衡量決策單位(decision making unit, DMU)生產效率的線性規劃模型,前者稱Charnes, Cooper, Rhodes(CCR)模型,後者稱自由配置階層(Free Disposal Hul, FDH)模型。這兩種模型均採用「技術比例」計算被觀察DMU相對於全體DMU的生產效率,效率1為判定DMU是「有效率」的基準,所有有效率DMU會構成前緣線,包絡所有無效率DMU,因此發展「資料包絡分析」(data envelopment analysis, DEA)方法論。
後續為增強DEA方法論區隔有效率DMU的能力,清楚地排列它們的優先順序,雖然已發展出凸性Andersen & Petersen (A&P)及Mehrabian, Alirezaee, Jahanshloo (MAJ)超效率模型,以及非凸性A&P FDH與MAJ FDH超效率模型,然而這些模型存在「求解不穩定」及「區隔能力不足」的兩大缺點,限縮DEA方法論的應用性。本論文分別以凸性MAJ模型與非凸性MAJ FDH效率區隔模型為基礎,發展了Bounded MAJ與Modified MAJ FDH兩個效率區隔模型,預期改善現有模型的問題。研究發現,第一:當被評估DMU數大於投入與產出項數和時,使用Bounded MAJ模型是可行的作法。第二、當面對部分投入0時,Modified MAJ FDH模型的求解穩定性較Cross Efficiency Measure (CEM)、A&P、MAJ及Bounded MAJ等模型為佳。第三、Bounded MAJ模型及Modified MAJ FDH模型已能改善A&P模型及MAJ模型的缺點,使DEA方法論的應用範圍更廣泛。

Since the seminal paper of Farrel (1957), the measurement of productive efficiency focuses on relative distances between an observed input-output combination and the boundary of the prevailing production technology.Data Envelopment Analysis is introduced by Charnes, Cooper and Rhodes (1978) and Free Disposal Hull (FDH) is proposed by Deprins, Simar and Tulkens (1984). DEA and FDH may generate plural efficient DMUs, so that for these units no ranking can be derived. Previous research has done to discriminate between efficient DMUs in DEA and FDH.
Therefore, the purpose of this study to proposed Bounded MAJ and Modified MAJ FDH that can successfully remove the above mentioned difficulties arising from the previous super-efficiency models. Results of the study show: (i) as the number of DMUs is greater than the sum of the number of inputs and outputs, Bounded MAJ provides a full ranking of DMUs and seems quite apt; (ii) where some of input levels are equal to zero, Modified MAJ FDH provides more stability efficiency measure than Cross Efficiency Measure, A&P, MAJ and Bounded MAJ; and (iii) Bounded MAJ and Modified MAJ FDH provide more wider applications than A&P, MAJ, A&P FDHMAJ, and avoids the use of hypothetical reference technology or price as the base for measuring production efficiency that leads to the closest envelop to the data, and the radial efficiency score of any productive unit is necessarily always based on an (other) observed unit.

書名頁
論文口試委員審定書
授權書
中文摘要..................................................IV
英文摘要..................................................V
誌謝.........................................................VI
目錄.........................................................VII
表目錄......................................................VIII
圖目錄......................................................IX
符號說明...................................................X
第一章 緒論...............................................1
第一節 研究背景.........................................1
第二節 研究重要性與目的............................6
第三節 研究流程........................................11
第四節 研究限制........................................13
第五節 論文架構........................................14
第二章 文獻回顧........................................15
第一節 效率前緣觀.....................................15
第二節 有限線性規劃..................................17
第三節 DEA模型........................................22
第四節 FDH模型........................................33
第五節 文獻小結........................................43
第三章 研究方法........................................46
第一節 Bounded MAJ效率區隔模型.............46
第二節 Modified MAJ FDH 效率區隔模型.....50
第三節 演算法...........................................60
第四章 實驗結果........................................65
第一節 Bounded MAJ效率區隔模型.............65
第二節 Modified MAJ FDH效率區隔模型......71
第三節 實驗結果小結.................................76
第五章 結論..............................................78
第一節 研究貢獻與發現..............................78
第二節 建議..............................................79
參考文獻..................................................80
自傳.........................................................85

Adler, N., et al. "Review of Ranking Methods in the Data Envelopment Aanalysis Context," European Journal of Operational Research, 140, pp. 249-265, 2002.
Agrell, P.J., Tind, J. "A Dual Approach to Nonconvex Frontier Models," Journal of Productivity Analysis, 16, pp. 129-147, 2001.
Alirezaee, M. R. and Afsharian, M. "A Complete Ranking of DMUs Using Restrictions in DEA Models," Applied Mathematics and Computation, 189 (2), pp. 1550-1559, June 2007.
Ali, I. and Seiford, L. "Computational Accuracy and Infinitrsimals in Data Envelopment Analysis," INFOR, 31, pp. 290-297, 1993.
Amirteimoori, A., et al. "Ranking of Decision Making Units in Data Envelopment Analysis: A Distance-based Approach," Applied Mathematics and Computation, 171, pp. 122-135, 2005.
Andersen, P., Petersen, N.C. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, 39, pp. 1261-1264, 1993.
Balas, E. "A Note on Duality in Disjunctive Programming," Journal of Optimization Theory and Applications, 21, pp. 523-538, 1977.
Banker, R.D., et al. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, 30, pp. 1078-1092, 1984.
Banker, R.D., Chang, H. "The Super-efficiency Procedure for Outlier Identification, not for Ranking Efficient Units," European Journal of Operational Research, 175(2), pp. 1311-1320, 2006.
Bardhan, I., et al. "Models for Efficiency Dominance in Data Envelopment Analysis. Part 1: Additive Models and MED Measures," Journal of the Operations Research Society of Japan, 39, pp. 333-344, 1996.
Bernroider, E. W.N., Stix, V. "A Method Using Weight Rrestrictions in Data Envelopment Analysis for Ranking and Validity Issues in Decision Making," Computers and Operations Research, 34, pp. 2637 – 2647, 2007.
Charnes, A., et al. "Measuring the Efficiency of Decision Making Units," European Journal of Operational Research, 2, pp. 429-444, 1978.
De Borger, B., et al. "A Non-parametric Free Disposal Hull (FDH) Approach to Technical Efficiency: An Illustration of Radial and Graph Efficiency Measures and Sensitivity Results," Swiss Journal of Economics and Statistics, 4, pp. 647-667, 1994.
Deprins, D., et al. The Performance of Public Enterprises: Concepts and Measurement, Amsterdam: North-Holland, 1984.
Doyle, J., Green, R. "Efficiency and Cross-efficiency in DEA: Derivation, Meanings and Uses," Journal of Operational Research Society, 45(5), pp. 567-578, 1994.
Dula, J.H., Hickman, B.I. "Effects of Excluding the Column Being Scored from the DEA Envelopment LP Thchnology Matrix," Journal of the Pperational Research Society, 48, pp. 1001-1012, 1997.
Fang, S.C., Purthenpura, S. Linear Optimization and Extensions: Theory and Alogrithms, New Jersey, Prentice Hall College Div, 1993.
Farell, M. "The Measurement of Productive Efficiency," Journal of the Royal Statistical Society, Series A (General), 120, pp. 253-281, 1957.
Friedman, L., Sinuany-Ster, Z. "Combining Ranking Scales and Selecting Variables in the DEA Context: The Case of Industrial Branches," Computers Operations Research, 25(9), pp. 781-791, 1998.
Grosskopf, S. "The Role of Reference Technology in Measuring Pproductive Efficiency," Economic Journal, 96, pp. 499-513, 1986.
Hu, S.C., Chung, Y.K. "A Bounded-MAJ Model for Disxriminating DEA-Effieicnt Units," Pure and Applied Mathematika Sciences, 71(1-2), pp. 13-22, March 2010.
Jahanshahloo, G.R., Afzalinejad, M. "A Ranking Method Based on a Full-inefficient Frontier," Applied Mathematical Modelling, 30, pp. 248-260, 2006.
Jahanahahloo, G.R., et al. "Modified MAJ Model for Ranking Decision Making Units in Data Envelopment Analysis," Applied Mathematics and Computation, 174, pp. 1054–1059, 2006.
Jahanshahloo, G.R., et al. "Ranking Using L1–norm in Data Envelopment Analysis," Applied Mathematics and Computation,153, pp. 215-224, 2004.
Jahanshahloo, G.R., et al. "Using the Gradient Line for Ranking DMUs in DEA." Applied Mathematics and Computation, 151, pp. 209-219, 2004.
Krätzschmar, M. "A Decomposition-dualization Approach for Solving Constrained Convex Minimization Problems with Applications to Discretized Obstacle Problems, " Numerische Mathematik, 54(5), pp. 507-531, 1989.
Liu, P.-Y. Operations Research, McGraw-Hill Companies, Taipei, 2006.
Li, X.-B., Reeves, G.R. "A Multiple Criteria Approach to Data Envelopment Analysis," European Journal of Operational Research, 115, pp. 507-517, 1999.
Mehrabian, S., et al. "A Complete Efficiency Ranking of Decision Making Units in Data Envelopment Analysis," Communicational Optimization and Applications, 14, pp. 261-266, 1999.
Puyenbrocek, T.V. "Some Remarks on Modified FDH," Journal of Productivity Analysis, 9, pp. 81-94, 1998.
Seiford, L.M., Zhu, J. "Infeasibility of Super-Efficiency Data Envelopment Analysis Models," INFOR, 37, pp. 174-187, 1999.
Sexton, T.R., Silkman, R.H., Hogan, A.J., Data Envelopment Analysis: Critique and Extensions. Measuring Efficiency: An Assessment of Data Envelopment Analysis, San Francisco, Jossey-Bass, CA, 1986.
Sinuany-Stern, Z., et al. "Academic Departments Efficiency Via Data Envelopment Analysis," Computers and Operations Research, 21, pp. 543-556, 1994.
Sueyoshi, T. "DEA Non-parametric Ranking Test and Index Measurement: Slack-adjusted DEA and an Application to Japanese Agriculture Cooperatives," Omega, 27, pp. 315-326, 1999.
Sinuany-Stern, Z., et al. "AN AHP/DEA Methodology for Ranking Decision Making Units," International Transactions in Operational Research, 7, pp. 109-124, 2000.
Sun, S., Hu, S. C. "Discriminating Efficient Units Using MAJ FDH," Applied Mathematics and Computation, 215, pp. 3116-3123, 2009.
Thrall, R. M. "Duality, Classification and Slack in Data Envelopment Analysis," Annals of Operations Research, 66, pp. 109-138, 1996.
Tone, K. "A Slacks-Based Measure of Efficiency in Data Envelopment Analysis," European Journal of Operational Research, 130, pp. 498-509, 2001.
Tone, K. "A Slack-Based Measure of Super-Efficiency in Data Envelopment Analysis," European Journal of Operational Research, 143, pp. 32-41, 2002.
Torgersen, A. M., et al. "Slack-adjusted Efficiency Measures and Ranking of Efficient Units," The Journal of Productivity Analysis, 7, pp. 379-398, 1996.
Tulkens, H. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail, Banking, Courts and Urban Transit," Journal of Productivity Analysis, 4, pp. 83-210, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔