(18.232.50.137) 您好!臺灣時間:2021/05/06 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何奕成
研究生(外文):Yi-Cheng Ho
論文名稱:應用彈道式移動模型量測三維空間中的瞄準移動
論文名稱(外文):An Application of Ballistic Movement Models for Three-Dimensional Pointing Movements
指導教授:林瑞豐林瑞豐引用關係
指導教授(外文):Jui-Feng Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:86
中文關鍵詞:3D空間彈道式移動手部移動瞄準移動Fitts’ Law輸入設備評估
外文關鍵詞:3D environmentballistic movementhand-control movementpointing movementFitts’ Lawinput device evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在現代日常生活中,人們常需要使用手來執行各種工作,例如以滑鼠控制游標開啟Windows 作業系統中的應用程式。然而,一個手控制移動實際上是經由多個彈道式移動所構成,而人在執行這些彈道式移動的能力直接影響到手控制移動所需花費的時間以及準確度。
本研究目的是以Lin (2010)與Lin et al. (2011)在2D空間中所驗證的彈道式移動模型為基礎,量測在真實3D空間中執行彈道式手部移動所需花費的時間和移動後落點與目標點之間的誤差,並驗證彈道式移動時間模型和彈道式移動變異模型的有效性。
本研究分為兩個實驗,實驗一為測試性實驗,其目的為確定實驗設計的可行性,實驗二為正式實驗,自變項為受測者、慣用手與非慣用手、七個移動距離及七個移動方向,依變項為執行彈道式移動所花費時間與移動後三軸落點誤差變異。
實驗結果顯示:(1)三個自變項(受測者、左右手、距離)對於彈道式移動時間及三軸落點變異皆有顯著影響(p < 0.05),(2)彈道式移動時間模型成功描述移動時間與距離平方根之間的線性關係(R-S(adj)=99.3%),(3)彈道式移動變異模型有效描述三軸落點變異和距離平方之間的線性關係,模型分別能對X、Y與Z軸描述84.4%、99.0%及91.3%的資料變異,而三軸誤差變異由高至低依序排列為X軸、Z軸然後為Y軸,(4)左右手在不同移動方向下,由於使用到的手部關節部位不同,所需花費的移動時間與落點誤差變異也會不同,整體而言,移動所使用的關節部位越少,移動時間越快,但在X軸上的落點變異會越大,而Y軸上的落點變異會越小,而因為執行彈道式移動的固定高度因素,所量測到的Z軸落點變異卻是三軸中最大的。
本研究成功量測3D空間中不同移動方向執行的彈道式移動並驗證彈道式移動兩個模型,彈道式移動模型相較於Fitts’ Law (1954)能給予手控制移動在移動速度及準確度上的獨立分析,未來可作為評估輸入控制設備的準則。


In daily life, we use their hands to execute various activities, such as controlling a mouse cursor to open an application program in the windows operating system. However, a hand-control movement is composed of several unit movements, called “ballistic movement”. Hence, the capability (speed and accuracy) for executing ballistic movements directly affects the performance of a hand-control movement.
The main purposes of this research were to verified the application of the two ballistic movement times proposed by Lin (2010) and Lin et al. (2011) in a real 3D environment, and to utilize these two models for measuring the ballistic movement time and ballistic movement end-point variability.
This research was consisted of two of experiments, in which the first experiment was a pilot study and the second experiment was formal experiment. The independent variables studied in these experiments included participant, dominant and nondominant hand, movement distance and movement direction, and the dependent variables were movement time and movement variability measured in three dimensions.
The results showed that (1) three independent variables (participant, hand, distance) had significant effects on ballistic movement time (p < 0.05); (2) the ballistic movement time model successfully predicted the linear relationship between movement time and the distance square root (R-Sq(adj)=99.3%); (3) the ballistic movement variability model successfully predicted the linear relationships between three dimensional end-point variability and the square of distance. The model explained X-axis, Y-axis, and Z-axis errors 91.3%, 84.4%, and 99.0% of data variance, respectively. The order of three dimensional end-point variability arranged from the highest to the lowest was X-axis, Z-axis and then Y-axis; and (4) for both hands, movements that involved less moving joints and segments required shorter movement time and resulted in larger X-axis end-point variability and smaller Y-axis end-point variability. However, we found that Z-axis end-point variability was the largest among the three dimensional measurements. This might due to the consist height of the ballistic movement execution location set in the experiments. In this specific height, participants might maintain difficultly the Y-axis accuracy.
This research successfully measured different direction of 3D environment movement performed in different movement directions and verified the two ballistic movement models. Ballistic movement, compared to Fitts’ Law (1954), is expected to analyze movement speed and movement accuracy independently. Future research could utilize the two models for evaluating input control devices.


目錄
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
一、 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究流程 3
二、 文獻探討 5
2.1 Fitts’ Law的應用研究 5
2.1.1 Fitts’ Law模型在1D空間中的相關研究 5
2.1.2 Fitts’ Law模型在2D空間中的相關研究 7
2.1.3 Fitts’ Law模型在3D空間中的相關研究 11
2.2 Fitts’ Law的限制與彈道式移動模型上的差異 12
2.3 彈道式移動模型 13
2.3.1 彈道式移動時間模型 14
2.3.2 彈道式移動變異模型 15
2.4 文獻總結 16
三、 研究方法 17
3.1 實驗架構 17
3.2 實驗一 17
3.2.1 受測者 17
3.2.2 實驗設備 18
3.2.3 實驗流程 20
3.2.4 實驗步驟 21
3.2.5 自變項與依變項 25
3.3 實驗二 27
3.3.1 受測者 27
3.3.2 實驗設備 27
3.3.3 實驗流程 28
3.3.4 實驗步驟 29
3.3.5 自變項與依變項 31
四、 實驗結果與分析 32
4.1 實驗分析內容 32
4.2 實驗一結果 32
4.2.1 彈道式移動時間 32
4.2.2 彈道式移動變異 35
4.3 實驗二結果 41
4.3.1 彈道式移動時間 41
4.3.2 彈道式移動變異 45
4.4 小結 56
五、 討論 57
5.1 實驗二討論 57
5.1.1 彈道式移動時間 57
5.1.2 彈道式移動變異 58
5.3 限制因素 61
六、 結論與建議 63
6.1 結論 63
6.2 未來研究方向 63
參考文獻 65
附錄A 68
附錄B 74


Accot, J. & Zhai, S., 2003. Refining fitts'' law models for bivariate pointing. Proceedings of the SIGCHI conference on Human factors in computing systems. Ft. Lauderdale, Florida, USA: ACM, 193-200.
Atsuo Murata & Takahashi, R., 2008. Optimal slope of touch panel -comparison between young and older adults-. IEEE SMC Hiroshima Chapter, 111-116.
Atsuo Murata, A.H.I., 2001. Extending fitts'' law to a three-dimensional pointing task. Human Movement Science, 20 (6), 791-805.
Brooks, V.B., 1979. Motor-program revisited, in: R. E. Talbott and d. R. Humphrey
(eds.) Posture and movement, Raven Press, New York.
Crossman, E.R. & Goodeve, P.J., 1983. Feedback control of hand-movement and fitts'' law. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 35A (2), 251-278.
Drury, C.G., 1971. Movements with lateral constraint. Ergonomics, 14 (2), 293-305 [Accessed 2011/07/21].
Drury, C.G., Montazer, M.A. & Karwan, M.H., 1987. Self-paced path control as an optimization task. Systems, Man and Cybernetics, IEEE Transactions on, 17 (3), 455-464.
Fitts, P.M., 1954. The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47 (6), 381-391.
Fitts, P.M. & Radford, B.K., 1966. Information capacity of discrete motor responses under different cognitive sets. Journal of Experimental Psychology, 71 (4), 475-482.
Gan, K.-C. & Hoffmann, E.R., 1988. Geometrical conditions for ballistic and visually controlled movements. Ergonomics, 31 (5), 829-839 [Accessed 2011/07/21].
Glencross, D.J., 1977. Control of skilled movements. Psychological Bulletin, 84 (1), 14-29.
Grossman, T. & Balakrishnan, R., 2004. Pointing at trivariate targets in 3d environments. Proceedings of the SIGCHI conference on Human factors in computing systems. Vienna, Austria: ACM, 447-454.
Hoffmann, E.R. & Sheikh, I.H., 1994. Effect of varying target height in a fitts'' movement task. Ergonomics, 37 (6), 1071-1088.
Howarth, C.I., Beggs, W.D.A. & Bowden, J.M., 1971. The relationship between speed and accuracy of movement aimed at a target. Acta Psychologica, 35 (3), 207-218.
Lin, J.F., Drury, C.G., Karwan, M.H. & Paquet, A.V, 2009. A general model that accounts for fitts''law and drury''s model. Paper presented at the Proceedings of the 17th Congress of the International Ergonomics Association.
Keele, S.W., 1968. Movement control in skilled motor performance. American Psychological Association, Inc., 70 (6).
Koshland, G.F., Galloway, J.C. & Nevoret-Bell, C.J., 2000. Control of the wrist in three-joint arm movements to multiple directions in the horizontal plane. Journal of Neurophysiology, 83 (5), 3188-3195.
Lacquaniti, F., Ferrigno, G., Pedotti, A., Soechting, J. & Terzuolo, C., 1987. Changes in spatial scale in drawing and handwriting: Kinematic contributions by proximal and distal joints. The Journal of Neuroscience, 7 (3), 819-828.
Lin, C., Sun, T.-L., Chen, H.-J. & Cheng, P.-Y., 2009. Evaluation of visually-controlled task performance in three dimension virtual reality environment. In Shumaker, R. ed. Virtual and mixed reality. Springer Berlin / Heidelberg, 465-471.
Lin, J.-F., 2010. 彈道式移動時間模型與彈道式移動變異模型的驗證. 第17屆人因工程學會年會暨學術研討會.
Lin, J.-F., Drury, C., Chou, C.-M., Lin, Y.-D. & Lin, Y.-Q., 2011. Measuring corrective reaction time with the intermittent illumination model. In Jacko, J. ed. Human-computer interaction. Design and development approaches. Springer Berlin / Heidelberg, 397-405.
Mackenzie, I.S. & Buxton, W., 1992. Extending fitts'' law to two-dimensional tasks. Proceedings of the SIGCHI conference on Human factors in computing systems. Monterey, California, United States: ACM, 219-226.
Meyer, D.E., Abrams, R.A., Kornblum, S., Wright, C.E. & Keith Smith, J.E., 1988. Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95 (3), 340-370.
Milner, T.E., 1992. A model for the generation of movements requiring endpoint precision. Neuroscience, 49 (2), 487-496.
Montazer, M.A., Drury, C.G. & Karwan, M.H., 1988. An optimization model for self-paced tracking on circular courses. Systems, Man and Cybernetics, IEEE Transactions on, 18 (6), 908-916.
Schmidtke, H., And Stier, , 1960. Der aufbau komplexer bewegungsablaufe aus elementarbewegungen. Forschungsberichte des Landes Nodrhein-Westfalen, 822, 13-32.
Shannon, C.E., 1948. A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev., 5 (1), 3-55.
Soukoreff, R. & Mackenzie, I., 2004. Towards a standard for pointing device evaluation, perspectives on 27 years of fitts? Law research in hci. International Journal of Human-Computer Studies, 61 (6), 751-789.
Tovi Grossman, R.B., 2004. Pointing at trivariate targets in 3d environments.
Ware, C. & Balakrishnan, R., 1994. Reaching for objects in vr displays: Lag and frame rate. ACM Trans. Comput.-Hum. Interact., 1 (4), 331-356.
Ware, C. & Lowther, K., 1997. Selection using a one-eyed cursor in a fish tank vr environment. ACM Trans. Comput.-Hum. Interact., 4 (4), 309-322.
Welford, A.T., 1968. Fundamentals of skill: New York, NY, US: Methuen.
Whisenand, T.G. & Emurian, H.H., 1996. Effects of angle of approach on cursor movement with a mouse: Consideration of fitt''s law. Computers in Human Behavior, 12 (3), 481-495.
Whisenand, T.G. & Emurian, H.H., 1999. Analysis of cursor movements with a mouse. Computers in Human Behavior, 15 (1), 85-103.
Woodworth, R.S., 1899. The accuracy of voluntary movement. Psychological Monographs, 3 (2), 1-114.
吳盈, 2009. 三度空間呈現複雜度對目標搜獲作業行為之影響. 國立成功大學認知科學研究所碩士學位論文.
張振豪, 2006. 以fitts’ law 探討行動電話鍵盤輸入特性. 明志科技大學工程管理研究所碩士學位論文.
許勝雄, 1991. 人因工程 台北.
蘇怡誠, 2007. 指控點選輸入裝置之改善設計與使用肌群疲勞測試. 國立台灣科技大學工業管理系碩士學位論文.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔