(35.175.212.130) 您好!臺灣時間:2021/05/17 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:郭珉旬
研究生(外文):Min-Hsun Kuo
論文名稱:以流程挖掘技術發展流程模型
論文名稱(外文):Developing A Process Model with Process Mining
指導教授:陳雲岫陳雲岫引用關係
指導教授(外文):Yun-Shiow Chen
學位類別:博士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:58
中文關鍵詞:流程挖掘流程模型流程模型比較流程管理系統流程設計流程改善
外文關鍵詞:process mining, process model, process equivalence, process model design, process improvement, model reuse, Stream-data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
流程模型之建構與比較為流程挖掘技術中最為重要且基本。流程模型之建構演算法中,α-algorithm已應用在許多實際案例且獲得不錯的結果。然而,該演算法對於推論得之活動關係缺乏回饋確認之機制造成流程模型與實際路徑有所差異。此外,多數流程挖掘演算法多從活動關係角度發展模型,而非從流程模型之使用者角度發展之。是故,本研究將從使用者角度藉由修改及延伸α-algorithm,以系統化的方式處理「多重選擇」架構的複雜活動關係。再者,對於流程模型比較的問題,相關研究多著重在量化模型相似程度,而無法表現造成模型差異之因素,對此,本研究則提出兩個評估指標,Support 和 Confidence和一個模型比較表格。Support用以表示模型之間的相似程度,Confidence則是衡量模式之間相同的部分佔個別模型之比例,而模型比較表格則是提供造成流程模型差異之因素。本研究中將提出之方法實際應用於挖掘台灣某私立醫院幼兒科護理人員之工作流程,並比較該流程模型與由α-algorithm所挖掘之流程模型之差異。
在執行速率上,因本研究所提出之方案增添了回饋的動作,所以速率較α-algorithm及目前現有的相關演算法慢,但是所挖掘出之流程模型是較為貼近實際路徑記錄。而流程模型的比較,目前仍無一廣泛被接受的比較評估標準,而本研究所提出之方法優勢在於不僅能量化流程模型的相似程度,而且能提供使用者更多的資訊以供流程管理之用。


Process mining is getting more and more attention in many fields. Among the related important and essential techniques, building a model from event logs and process conformance are the most two to be used widely. For building a model, the popular α-algorithm has been used in many real cases and obtains good results. However, the difference between the activity relationships existing in flows/traces and that summarized byα-algorithm results from the lacks of error detection and decision feedback for these inferred activity relationships. Besides, most algorithms developed from the aspect of the activity relationship, not the users who will work following the process model. To overcome these two problems, a modified algorithm has been developed by extending the α-algorithm and a pattern “Option” is proposed to handle these complex activity relationships systemically. Moreover, for process conformance, the related methods of process conformance can quantify the difference or similarity between processes, while they can not show what causing the difference. To resolve the previous problem, this study provides two parameters, Support and Confidence, to quantify the difference/similarity between processes as well as offers the key factors causing the difference. “Support” is to evaluate the similarity between processes based on the activities and activity relationships; and “Confidence” is to measure the relation between processes based on the ratio of their identical parts to the compared process. The proposed method is applied to mine the process model of the staff nurses’ processes of Taiwan’s hospital pediatrics department and estimate the difference of this model and the model mined byα-algorithm.
In the performance efficiency, though the proposed algorithm can not outperform other related algorithms, yet does capture more complete relationships between/among activities and does show more understandable process model. As to process conformance, there is still no accepted widely standard for measuring the difference between processes, therefore, this study can not provide the exact estimating value but find the low bound of the difference and the factors causing the difference with a simplified method.


中文摘要 i
英文摘要 iii
誌 謝 v
圖 目 錄 viii
表 目 錄 ix
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 2
第2章 文獻探討 3
2.1 流程挖掘之介紹 3
2.2流程挖掘之演算法 4
2.3 流程模型之比較 7
第3章 資料型態與流程符號之定義 11
3.1 資料型態 11
3.2 模型的表示形式 11
第4章 模型方法-建構流程模型 17
4.1 流程模型的建構 17
4.2 演算法步驟 18
4.3 演算法說明 20
4.3.1 Concurrence與 Loop 20
4.3.2 Concurrence與Alternative 22
4.3.2.1 單純的concurrence 22
4.3.2.2單純的alternative 22
4.3.2.3 Concurrence與alternative 23
4.3.3建構活動關係表格之步驟 28
4.4建構流程模型之範例說明 29
第5章 模型方法-模型比較 34
5.1流程模型比較之步驟 34
5.2模型比較之範例說明 40
第6章 案例探討 45
第7章 結論與未來發展 51
7.1 結論 ……….……………………………………………….............. 51
7.2 未來研究 ……….………………………………………….............. 52
參考文獻 …………………...………………………………………….............. 53


[1] Agrawal, R., Gunopulos, D., Leymann F.(1998), Mining process models from workflow logs, Lecture Notes in Computer Science 1998; 1337:469.DOI:10.1007/BFb0100972
[2] Alves de Medeiros, A.K., Weijters, A.J.M.M., and Van der Aalst, W.M.P. (2005), Genetic process mining: a basic approach and its challenges, in:C. Bussler et al. (Eds.): BPM 2005 Workshops, LNCS 3812, Springer-Verlag Berlin Heidelberg, 203-215.
[3] Bae, Joonoo, Caverlee, James, Liu, Ling, and Yan, Hua (2006), Process mining by measuring process block similarity, in:J. Eder, S. Dustdar (Eds.): BPM 2006 Workshops, LNCS 4103, Springer-Verlag Berlin Heidelberg, 141-152.
[4] Bae, Joonoo, Liu, Ling, Caverlee, James, and Rouse, William B. (2006), Process mining, discovery, and integration using distance measures, IEEE International Conference on Web Services (ICWS’06) ,479-488
[5] Bae, Joonsoo, Bae, Hyerim, Kang, Suk-Ho, and Kim, Yeongho (2004), Automatic control of workflow processes using ECA Rules, IEEE Transactions on knowledge and data engineering, Vol.16, No.8, 1010-1023.
[6] Balasubramanian, S. and Gupta, Mayank (2005), Structural matrices for goal based business process design and evaluation, Business process management Journal, Vol.11, No.6, 680-694.
[7] Chang, James F. (2006), Business process management systems: strategy and implementation, Auerbach Publications, Taylor & Francis Group.
[8] Cook, Jonathan E., and Wolf, Alexander L. (1995) , Automating process discovery through event-data analysis, ACM, 73-82.
[9] Cook, Jonathan E., and Wolf, Alexander L. (1998), Discovering models of software processes from event-based data, ACM Transactions on Software Engineering and Methodology, Vol.7, No.3, 215-249.
[10] Cook, Jonathan E., and Wolf, Alexander L. (1998), Event-based detection of concurrency, ACM SIGSOFT Software Engineering Notes , Proceedings of the 6th ACM SIGSOFT international symposium on Foundations of software engineering SIGSOFT ‘98/FSE-6, Vol.23 , No.6, 35 – 45.
[11] Cook, Jonathan E., and Wolf, Alexander L. (1999), Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model, ACM Transactions on Software Engineering and Methodology, Vol.8, No.2, 147-176.
[12] De Medeiros, A.K.A., Van der Aalst, W.M.P, and Weijters, A.J.M.M. (2003), Workflow mining: Current status and future directions, in:R. Mccrsman et. Al. (Eds.), CoopIS/DOA/ODBASE 2003, LNCS 2888, 389-406.
[13] De Medeiros, A.K.A., Van Dongen, B.F., Van der Aalst, W.M.P, and Weijters, A.J.M.M., Process mining: Extending the α-algorithm to mine short loops, http://fp.tm.tue.nl/beta/publications/working%20papers/Beta_WP113.pdf
[14] Ellis, Clarence, Keddara, Karim, and Rozenberg, Grzegorz (1995), Dynamic change within workflow systems, ACM, 10-21.
[15] Gaaloul, Walid, Bhiri, Sami, and Godart, Claude (2004), DiscoveringWorkflow Transactional Behavior from Event-Based Log, in:R. Meersman, Z. Tari (Eds.): CoopIS/DOA/ODBASE 2004, LNCS 3290, Springer-Verlag Berlin Heidelberg 3–18.
[16] Hammori, Markus, Herbst, Joachim, and Kleiner, Niko (2004), Interactive workflow mining, in: J. Desel, B. Pernici, and M. Weseke (Eds.), BPM 2004, LNCS 3080, 211-226.
[17] Hammori, Markus, Herbst, Joachim, and Kleiner, Niko (2006), Interactive workflow mining-requirements, concepts, and implementation, Data and Knowledge Engineering, Vol.56, 41-63.
[18] Herbst, Joachim, and Karagiannis, Dimitris (2004), Workflow mining with InWoLvW, Computers in Industry, Vol.53, 245-264.
[19] Herbst, Joachim, and Karagiannis, Dimitris, Integrating Machine Learning and Workflow Management to Support Acquisition and Adaptation of Workflow Models, http://citeseer.ist.psu.edu/cache/papers/cs/25888/http:zSzzSzhome.t-online.dezSzhomezSzjoachim.herbstzSzijisafm00.pdf/herbst98integrating.pdf.
[20] Huang, Xing-Qi, Wang, Li-Fu, Zhao, Wen, Zhang, Shi-Kun, and Yuan, Chong-Yi (2006), A workflow process mining algorithm based on synchro-net, J. Comput. Sci. & Technol., Vol.21, No.1, 66-71.
[21] Humphrey, Watts S. and Kellner, Marc I. (1989), Software process modeling: principles of entity process models, ACM, 331-342.
[22] Jung, Jae-Yoon and Bae, Joonoo (2006), Workflow clustering method based on process similarity, in: M. Gavrilova et. al. (Eds.): ICCSA 2006, LNCS 3981, Springer-Verlag Berlin Heidelberg, 379-389.
[23] Kleiner, Nikolaus (2005), Delta analysis with workflow logs: aligning business process prescriptions and their reality, Requirements Eng. 10: 212-222.
[24] Ly, Linh Thao, Rinderle, Stefanie, Dadam, Peter, and Reichert, Manfred (2006), Mining Staff Assignment Rules from Event-Based Data, in:C. Bussler et al. (Eds.): BPM 2005 Workshops, LNCS 3812, Springer-Verlag Berlin Heidelberg, 177-190.
[25] Maruster, Laura, Weijters, A.J.M.M., Van der Aalst, W.M.P., and Van den Bosch, Antal (2002), Process mining: discovering direct successors in process logs, in: S. Lange, K. Satoh, and C.H. Smith (Eds.): DS 2002, LNCS 2534, Springer-Verlag Berlin Heidelberg, 364-373.
[26] Schimm, Guido (2003), Mining Most Specific Workflow Models from Event-Based Data, in:W.M.P. van der Aalst et al. (Eds.): BPM 2003, LNCS 2678, Springer-Verlag Berlin Heidelberg, 25–40.
[27] Schimm, Guido (2004), Mining exact models of concurrent workflows, Computers in Industry, Vol.53, 265-281.
[28] Van Aalst, W.M.P., and Van Dongen, B.F. (2002), Discovery workflow performance models from timed logs, in:Y.Han, S. Tai, D. Wikarski (Eds.), International Conference on Engineering and Deployment of Cooperative Information Systems (EDCIS 2002), Lecture Notes in Computer Science, 2480, Springer-Verlag, Berlin, 45-63.
[29] Van Aalst, W.M.P., and Weijters, A. J. M. M. (2004), Process mining: a research agenda, Computers in Industry, Vol.53, 231-244.
[30] Van Aalst, W.M.P., Van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., and Weijters, A. J. M. M. (2003), Workflow mining: A survey of issues and approaches, Data & Knowledge Engineering, Vol.47, 237-267.
[31] Van der Aalst W.M.P., Alves de Medeiros, A.K., and Weijters, A.J.M.M. (2006), Process equivalence: comparing two process models based on observed behavior, in:S. Dustdar, J.L.Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, Springer-Verlag Berlin Heidelberg, 129-144.
[32] Van der Aalst, W.M.P, Reijers, H.A., Weijters, A.J.M.M., Van Dongen, B.F., Alves de Medeiros, A.K., Song, M., and Verbeek, H.M.W., Business process mining: An industrial application, http://is.tm.tue.nl/staff/wvdaalst/publications/z7.pdf
[33] Van der Aalst, W.M.P. (2005), Business alignment: Using process as a tool for Delta analysis and conformance testing, Requirements Eng 10: 198-211
[34] Van der Aalst, W.M.P., Alves de Medeiros, A.K. and Weijters, A.J.M.M. (2005), Genetic process mining, in:J. Cortadella and W. Reisig(Eds.): Applications and Theory of Petri Nets 2005, LNCS 3536, Springer-Verlag Berlin Heidelberg 48-69.
[35] Van der Aalst, W.M.P., Alves de Medeiros, A.K., and Weijters, A.J.M.M. (2006), Process equivalence: comparing two process models based on observed behavior, in:S. Dustdar, J.L.Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, Springer-Verlag Berlin Heidelberg, 129-144.
[36] Van der Aalst, W.M.P., and de Medeiros, A.K.A. (2005), Process Mining and Security: Detecting Anomalous Process Executions and Checking Process Conformance, Electronic Notes in Theoretical Computer Science, Vol.121, 3-21.
[37] Van der Aalst, W.M.P., Weijters, A.J.M.M., and Maruster, L., Workflow Mining: Discovering Process Models from Event Logs. BPM Center Report BPM-04-06, BPMcenter.org, 2004. http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2004/BPM-04-06.pdf
[38] Van der Aalst, Wil and Weijters, A. J. M. M. (TON) (2005), Process mining, in: Marlon Dumas, Wil. Van der Aalst, and Arthur H. M. ter Hofstede(eds.): PROCESS-AWARE INFORMATION SYSTEMS Bridging People and Software Through Process Technology, 235-256.
[39] Van Dongen, B.F., Mendling, J., and Van der Aalst, W.M.P (2006), Structural patterns for soundness of business process models, Proceedings of the 10th IEEE International Enterprise Distributed Object Computing Conference (EDOC’06), 116 – 128.
[40] Van Dongen, Boudewijn F. and van der Aalst, Wil.M.P. (2004), Emit: A process mining tool, in:J. Cortadella and W. Reisig(Eds.): Applications and Theory of Petri Nets 2004, LNCS 3099, Springer-Verlag Berlin Heidelberg, 454-463.
[41] Ven der Aalst, Wil M.P., and Song, Minseok(2004), Mining social networks: Uncovering interaction patterns in business processes, in: J.Desel, B. Pernici, and M. Weske (Eds.), BPM 2004, LNCS 3080, 244-260.
[42] Wainer, Jacques, Kim, Kwanghoon, and Ellis, Clarence A. (2005), A workflow mining method through model rewriting, in:H.Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, Springer-Verlag Berlin Heidelberg, 184-191.
[43] Wang, Juite(Ray), He, David W., and Feng, Chang-Xue (1995), "A structured approach for analysis of design processes," IEEE Transactions on computers, packaging, and manufacturing technology-part A, Vol.18, No.3.
[44] Wen, Lijie, Van der Aalst, Wil M.P., Wang, Jianmin, and Sum, Jiaguang (2006), Mining process models with Non-free-choice constructs, http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-23.pdf
[45] Wen, Lijie, Wang, Jianmin, and Sun, Jiaguang (2006), Detecting implicit dependencies between tasks from event logs, in: X. Zhou et al. (Eds.): APWeb 2006, LNCS 3841, Springer-Verlag Berlin Heidelberg, 591-603.
[46] Zhang, Shao-Hua, Gu, Ning, Lian, Jie-Xin, and Li, Sai-Han (2003), Workflow processs mining based on machine learning, proceedings of the second international conference on machine learing and cybernetics, 2319-2323.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top