(18.232.50.137) 您好!臺灣時間:2021/05/06 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高逸瑋
研究生(外文):I-WEI KAO
論文名稱:具選擇性重新產生機制之群體粒子最佳化演算法於連續型問題之應用
論文名稱(外文):Particle Swarm Optimization with Selective Regeneration Mechanism for Continuous Problems
指導教授:蔡啟揚
指導教授(外文):Chieh-Yuan Tsai
學位類別:博士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:80
中文關鍵詞:群體粒子最佳化演算法自我認知與社會化參數選擇性重新產生機制資料分群存貨分類
外文關鍵詞:Particle Swarm OptimizationCognition and Social ParametersSelective Particle Regeneration MechanismData ClusteringInventory Classification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科學的進步,人類所面臨的問題更加複雜,因此需要更強而有力的方法來解決,近年來啟發式演算法(Meta-Heuristic)已不斷的被提出與改良,並廣泛的應用到多種領域,綜觀其中,群體粒子最佳化演算法(Particle Swarm Optimization, PSO)為一新穎且高效率的方法,迄今已有許多學者以提升求解品質與收斂速度為其目標,提出改良型或是整合型PSO。本研究首先以提升群體粒子最佳化演算法的收斂效率為目的,因而對於演算法中的自我認知與社會化參數設定加以調整,並且提出”選擇性重新產生機制(Selective Particle Regeneration Mechanism)”,以改善求解品質。為了驗證其演算法效果,選擇性重新產生群體粒子最佳化演算法(Selective Regenerated Particle Swarm Optimization, SRPSO)應用於處理Multimodal Function問題,並與PSO以及其他改良型PSO相比較。
本研究的第二個部分為方法的實際應用,首先將SRPSO應用於處理分割式資料分群(Partition Data Clustering)問題,並且與K-mean整合為KSRPSO以提升分群效率。在本研究的第三個部分,探討以存貨分類(Inventory Classification)的方法來降低企業在供應鏈中的相關總成本(Total Relevant Cost, TRC),在此,SRPSO將被發展為一高效率之存貨分類方法,並能自動決定最佳存貨分類數目,且以實際案例來驗證其存貨分類效果,並且討論在不同的成本結構下之供應聯合作模式。經過一系列的連續型問題之測試與應用,SRPSO除了能夠達到本研究之預期效果外,與其他傳統方法和改良型最佳化演算法相比,其結果亦證明SRPSO為一穩定且高效率之最佳化演算法。


In recent years, meta-heuristic algorithms have been applied to a variety of complex problems in order to obtain quality solutions within acceptable computation time. Particle swarm optimization (PSO) is an efficient meta-heuristic algorithms based on the movement and intelligence of swarms. There were many researchers who developed improved or hybridized PSO algorithms. Most of them attempted to improve solution quality, robustness or efficiency. This research proposes an improved particle swarm optimization with novel mechanism. In order to increase efficiency, suggestions on algorithm’s parameter settings are proposed. In addition, “Selective Particle Regeneration” mechanism is designed to prevent the search from falling into local optima. To evaluate its effectiveness and efficiency, this approach is applied to multimodal function optimizing tasks and the performance is compared with PSO and other modified algorithms.
In the second part of this research, the application of the proposed algorithm is presented and discussed. First, SRPSO is applied to partition data clustering problems. The datasets with a variety of complexity are utilized for testing. In addition, SRPSO is combined with K-mean (KSRPSO) to increase the efficiency. Furthermore, SRPSO is employed to solve the inventory classification problem in a two-stage supply chain system. This algorithm automatically determines the optimal number of inventory groups and aim to minimize the total related costs in the supply chain. The total related cost, item classification and replenishment strategy in supply chain are compared and explained. After thorough tests and experiments on the above-mentioned continuous problems, the results fully demonstrate that SRPSO is a highly effective, efficient, and robust algorithm for continuous problems.


Abstract in Chinese......................................iii
Abstract in English........................................v
Acknowledgement..........................................vii
Contents..................................................ix
List of Figure...........................................xii
List of Table............................................xiv

Chapter 1 Introduction.....................................1
1.1 Background and Motivation..............................1
1.2 Objective..............................................2
1.3 Organization of the Dissertation.......................3

Chapter 2 Literature Survey................................5
2.1 Particle Swarm Optimization............................5
2.2 Multimodal Function....................................8
2.3 Data Clustering........................................9
2.4 Inventory Classification..............................11

Chapter 3 Methodology.....................................13
3.1 Particle Swarm Optimization...........................13
3.2 Selective Regenerated Particle Swarm Optimization.....14
3.2.1 Cognitive and Social Parameter Setting..............14
3.2.2 Selective Particle Regeneration.....................17

Chapter 4 Application - Multimodal Functions..............23
4.1 Multimodal Functions..................................23
4.2 Experiment Setting....................................24
4.2.1 Benchmark Multimodal Functions......................24
4.2.2 Parameter Setting...................................24
4.3 Experimental Result...................................24

Chapter 5 Application - Data Clustering...................34
5.1 Clustering............................................34
5.2 Clustering Algorithms.................................34
5.2.1 K-means Algorithm...................................34
5.2.2 Particle Swarm Optimization for Data Clustering.....35
5.2.3 Hybrid K-means and Selective Regenerated Particle
Swarm Optimization........................................36
5.3 Experiment Setting....................................36
5.3.1 Datasets............................................37
5.3.2 Parameter Settings..................................37
5.4 Experiment Result.....................................40

Chapter 6 Application - Inventory Classification in Supply Chain System..............................................49
6.1 Inventory Classification in Supply Chain Systems......49
6.1.1 Notation............................................49
6.1.2 Objective Functions.................................51
6.2 PSO and K-means for Inventory Classification..........51
6.3 Experiment Setting and Dataset........................52
6.3.1 Dataset.............................................53
6.3.2 Parameter Settings..................................54
6.4 Experiment Results and Analysis.......................55

Chapter 7 Conclusion......................................65

Appendix..................................................68
Reference.................................................72
Author Introduction.......................................79


Abhay, K. S., Rajendra, S. and Shalini, B. (2010). "Portfolio evaluation using OWA-heuristic algorithm and data envelopment analysis," Journal of Risk Finance, vol.11, pp.75-88.

Adib, A. B. (2005). “NP-hardness of the cluster minimization problem revisited,” Journal of Physics A: Mathematical and General, vol.40, pp.8487-8492.

Alper, U. (2008). “Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025,” Energy Policy, vol.36, pp.1937-1944.

Alwee, R., S. Shamsuddin, M. F., Aziz, A., Chey, K. H. and Hameed, H. N. A. (2009). “The impact of social network structure in particle Swarm optimization for classification problems,” International Journal of Soft Computing, vol.4, no.4, pp.151-156.

Bandyopadhyay, S., Maulik, U. and Malay, K. P. (2001). “Clustering using simulated annealing with probabilistic redistribution,” International Journal of Pattern Recognition and Artificial Intelligence, vol.15, no.6, pp.269-285.

Bandyopadhyay, S. and Maulik, U. (2002). “An evolutionary technique based on K-means algorithm for optimal clustering in RN,” Information Science, vol.146, pp.221-237.

Bruno, A. and Bernard, P. (2009). “A simulated annealing method based on a clustering approach to determine bills of materials for a large product family,” International Journal of Production Economics, vol.117, no.2, pp.389-401

Chakravarty, A. K. (1981). “Multi–item inventory aggregation into groups,” Journal of the Operational Research Society, vol.32, no.1, pp.19-26.

Charu, C. A. and Philip, S. Y. (1999). “Data Mining Techniques for Associations, Clustering and Classification,” Lecture Notes in Computer Science, vol. 1574, pp.13-23.

Chen, Z. Y. and Kang, L. S. (2006). “Steady-State Evolutionary Algorithm for Multimodal Function Global Optimization,” Lecture Notes in Computer Science, vol.3801, pp.200-207.

Chiang, C. S., Chu, S. C., Hsin, Y. C. and Wang, M. H. (2006). “Genetic distance measure for k-modes algorithm,” International Journal of Innovative Computing, Information and Control, vol. 2, no. 1, pp.34-40.

Chu, C. W., Liang, G. S. and Liao, C. T. (2008). “Controlling inventory by combining ABC analysis and fuzzy classification,” Computers & Industrial Engineering, vol.55, no.4, pp.841-851.

Coelho, L. (2008). “A quantum particle swarm optimizer with chaotic mutation operator,” Chaos, Solitons & Fractals ,vol.37, pp.1409-1418.

Cui, Z. and Cai, X. (2009). “Integral Particle Swarm Optimization with Dispersed Accelerator Information,” Fundamenta Informaticae ,vol.95, pp.427-447

Dunn, J. (1974). “Well separated clusters and optimal fuzzy partitions,” Journal of Cybernetics, vol.4, pp.95-104.

Fan, C. Y. (2009). “Apply Data-mining and Computational Intelligence for Stock trading signals Predication,” Yuan Ze University PhD thesis.

Fan, S. K. S., Liang, Y. C. and Zahara, E. (2004). “Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions,” Engineering Optimization, vol.36, pp.401-418.

Fan, S. K. S. and Zahara, E. (2007). “A hybrid simplex search and particle swarm optimization for unconstrained optimization,” European Journal of Operational Research, vol.181, pp.527-548.

Gajpal, P. P., Ganesh, L. S. and Rajendran, C. (1994). “Criticality analysis of spare parts using the analytic hierarchy process,” International Journal of Production Economics, vol.35, no.1-3, pp.293-297.

Gao, L., Yang, L., Zhou, C. and Hu, Y. (2006). “Category forecast application of neural network algorithm trained by particle swarm optimization,” Computer Integrated Manufacturing Systems, vol. 12, pp.465-469.

Guvenir, H. A. and Erel, E. (1998). “Multicriteria inventory classification using a genetic algorithm,” European Journal of Operational Research, vol.105, pp.29-37.

Guerra, F. A. and Coelho, L. d. S. (2008). “Multi-step ahead nonlinear identification of Lorenz''s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization,” Solitons and Fractals, vol.35, pp.967-979.

Hadi, V. A. (2010). “An improvement to multiple criteria ABC inventory classification,” European Journal of Operational Research, vol.201, no.3, pp.962-965.

Harland, C. M. (1996). “Supply chain management relationships, chains and networks,” British Journal of Management, vol.7, pp.63-80.

Hao, Z. F., Wang, Z. G. and Huang, H. (2007). “A Particle Swarm Optimization Algorithm with Crossover Operator,” International Conference on Machine Learning and Cybernetics, Hong Kong, vol.2, pp.1036-1040.

Hautaniemi, P. and Pirttila, T. (1999). “The choice of replenishment policies in an MRP environment,” International Journal of Production Economics, vol.59, no.1, pp.85-92.

Huynh, D.C. and Dunnigan, M.W. (2009). “Parameter estimation of an induction machine using advanced particle swarm optimization algorithms," IET Electric Power Applications, vol.4, pp.748-760.

Kao, I. W., Tsai, C. Y. and Wang, Y. C. (2007). “An effective particle swarm optimization method for data clustering,” IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, pp.548-552.

Kao, Y. T. and Zahara, E. (2007). “A hybrid genetic algorithm and particle swarm optimization for multimodal functions,” Applied Soft Computing, vol.8, pp.849-857.

Kao, Y. T., Zahara, E. and Kao, I. W. (2008). “A hybridized approach to data clustering,” Expert Systems with Applications, vol.34, pp.1754-1762.

Kennedy, J. (1999). “Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance,” Proceedings of IEEE Congress on EVolutionary Computation, Washington, DC, USA, pp.1931-1938.

Kennedy, J. and Eberhart, R. C. (1995). “Particle Swarm Optimization,” Proc. IEEE International Conference on Neural Networks, Piscataway, NJ, USA, pp.1942-1948.

Kennedy, J., Eberhart, R. and Shi, Y. H. (2001). “Swarm Intelligence,” Morgan Kaufmann Pub, San Francisco, CA, USA.

Kennedy, J. and Hlendes, R.(2002). “Population structure and particle swarm performance,” Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, HI, USA, vol.4, pp.1671-1676.

Kennedy, J. and Spears, W. (1998). “Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator,” Proceedings of IEEE Congress on Evolutionary Computation, Anchorage, AK, USA, pp.74-77.

Li, M. L. (2009). “Goods classification based on distribution center environmental factors,” International Journal of Production Economics, vol.119, no.2, pp.240-246.

Lin, C. J., Wang, J. G. and Lee, C. Y. (2009). “Pattern recognition using neural-fuzzy networks based on improved particle swam optimization,” Expert Systems with Application, vol. 36, pp.5402-5410.

Ling, S. H., Iu, H. H. C., Chan, K. Y., Lam, H. K., Yeung, B. C. W. and Leung, F. H. (2008). “Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applications,” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS , vol.38, pp.743-763.

Liu, B., Wang, L. and Jin, Y. H. (2008). “An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers,” Computers and Operations Research , vol.35, pp.2791-2806.

MacQueen, J. B. (1967). “Some methods for classification and analysis of multivariate observations,” Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, CU, USA, pp.281-297.

Manning, C. D., Raghavan, P. and Schutze H. (2009). “Introduction to Information Retrieval,” Cambridge University Press, Cambridge, UK.

Marinakis, Y., Marinaki, M., Doumpos, M. and Zopounidis, C. (2009). “Ant colony and particle swarm optimization for financial classification problems,” Expert Systems with Applications, vol. 36, no.7, pp.10604-10611.

Molga, M. and Smutnicki, C. (2005). “Test functions for optimization needs,” Available at http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

Onut, S., Tuzkaya, U.R. and Doǧac, B. (2008). “A particle swarm optimization algorithm for the multiple-level warehouse layout design problem,” Computers and Industrial Engineerin, vol.54, pp.783-799.

Park, J. B., Jeong, Y. W., Shin, J. R., Lee, K.Y. and Kim, J. H. (2007). “A Hybrid Particle Swarm Optimization Employing Crossover Operation for Economic Dispatch Problems with Valve-point Effects,” International Conference on Intelligent Systems Applications to Power Systems, Kaohsiung, Taiwan pp.5-8.

Partovi, F. Y. and Burton, J. (1993). “Using the Analytic Hierarchy Process for ABC analysis,” International Journal of Operations & Production Management, vol.13, no.9, pp.29-44.

Partovi, F. Y. and Hopton, W. E. (1994). “The analytic hierarchy process as applied to two types of inventory problems,” Production and Inventory Management Journal, vol.35, no.1, pp.13-19.

Prasad, G. V. S. N. R. V., Dhanalakshmi, Y., Kumar, V. V. and Babu I. R. (2010), “Mining for Optimised Data Using Clustering Along with Fuzzy Association Rules and Genetic Algorithms,” International Journal of Artificial Intelligence & Applications, vol.1, no.2, pp.30-41.

Ratnaweera, A., Halgamuge, S. K. and Watson, H. C. (2004), “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol.8, no.3, pp.240-255.
Saaty, T. L. (1980). “The analytic hierarchy process,” McGraw–Hill, New York.

Singh, G. and Deb, K. (2006). “Comparison of multi-modal optimization algorithms based on evolutionary algorithms,” Genetic and Evolutionary Computation Conference, Seattle, WA, USA, vol.2, pp.1305-1312

Silver, E. A. Pyke, D. F. and Peterson, R. (1998) “Inventory Management and Production Planning and Scheduling,” Wiley, New York.

Sha, D.Y. and Hsu, C. Y. (2008). “A New particle swarm optimization for the open shop scheduling problem,” Computers and Operations Research, vol.35, pp.3243-3261.

Sun, T. H. (2009). “Applying particle swarm optimization algorithm to roundness measurement,” Expert Systems with Applications, vol.36, pp.3428-3438.

Susana, C. E. and Carlos, A. C. C. (2003). “On the Use of Particle Swarm Optimization with Multimodal Functions,” Proceedings of IEEE Congress on Evolutionary Computation, Canberra, Australia, vol.2, pp.1130-1136.

Tsai, C. Y. and Yeh, S. W. (2008). “A multiple objective particle swarm optimization approach for inventory classification,” International Journal of Production Economics, vol.114, no.2, pp.656-666.

Tsai, C. Y. and Kao, I. W. (2009). “A Particle Swarm with Selective Particle Regeneration for Multimodal Functions,” WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS, vol.6, pp.242-252.

Tsai, C. Y. and Kao, I. W. (2011). “Particle swarm optimization with selective particle regeneration for data clustering” Expert Systems with Applications, vol.38, pp. 6565-6576.

Wang, F., Qiu, Y. and Bai, Y. (2005). “A new hybrid NM method and particle swarm algorithm for multimodal function optimization,” Lecture notes in computer science ,vol.3646, pp.497-508.

Wang, H. S., Che, Z. H. and Wu, C. (2009). “Using analytic hierarchy process and particle swarm optimization algorithm for evaluating product plans,” Expert Systems with Applications, vol.37, pp.1023-1034.

Wang, Z., He, P. L., Guo, L. S. and Zheng, X. S. (2004). “Clustering anaslysis of customer relationship in securities trade,” Proceedings of the third International Conference Machine Learning and Cybernetics, Shanghai, China, vol.3, pp.1760-1763.

Xu, Y., Xiong, L. and Wang, Y. (2006). “The Method of Module Partition for Product Family Structure with Applications,” 2006 IEEE International Conference on Service Operations and Logistics, and Informatics, Shanghai, China, vol.3, pp.780-784.

Yannis, M., Magdalene, M., Michael, D. and Constantin, Z. (2009). “Ant colony and particle swarm optimization for financial classification problems,” Expert Systems with Applications, vol.336, pp.10604-10611.

Zahara, E., Fan, S. K. S. and Tsai, D. M. (2005). “Optimal multi-thresholding using a hybrid optimization approach,” Pattern Recognition Letters, vol. 26, pp.1082-1095.

Zeng, Y., Zhu, C. A., Shen, L. G. and Qi, J. Y. (2007). “Discrete optimization problem of machine layout based on swarm intelligence algorithm,” Computer Integrated Manufacturing System, vol.13, pp.541-552.

Zielinski, K. and Laur, R. (2007). “Adaptive parameter setting for a multi-objective particle swarm optimization algorithm,” IEEE Congress on Evolutionary Computation, Singapore, pp.3019-3026.

Zhou, L., Shi, Y., Li, Y. and Zhang, W. (2010). “Parameter selection, analysis and evaluation of an improved particle swarm optimizer with leadership,” Artificial Intelligence Review, vol.34, pp.343-367.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔