(3.238.98.214) 您好!臺灣時間:2021/05/08 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黎家良
研究生(外文):Chia-Liang Li
論文名稱:鑭系波洛斯凱特觸媒於甲醇部分氧化之研究
論文名稱(外文):Lanthanum-transition Metal Perovskites for Methanol Partial Oxidation
指導教授:林裕川林裕川引用關係
指導教授(外文):Yu-Chuan Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:88
中文關鍵詞:波洛斯凱特貴金屬甲醇氧化氧化還原機制
外文關鍵詞:Perovskitenoble metalsmethanoloxidationredox
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文著眼於鑭系金屬波洛斯凱特觸媒LaBO3(B=錳、鈷和鐵) 與LaMn0.95B’0.05O3 (B’=鈀、鉑和銠) 於甲醇部分氧化(partial oxidation of methanol, POM)之應用。本研究使用不同的物理與化學方法鑑定觸媒的表面和本體。包括比表面積測定(BET)、結晶構造判定(XRD)、表面組成分析(EDS)、表面貴金屬價態分析(XPS)、程溫還原分析(H2-TPR)、程溫氧化分析(TPO)、程溫氧脫附分析(O2-TPD) 和甲醇程溫脫附分析 (CH3OH-TPD)。研究發現,以Mn做為B-site的波洛斯凱特觸媒擁有最好的活性,其主要反應路徑為甲醇燃燒。添加貴金屬的波洛斯凱特觸媒在還原能力和氧的活性相較於LaMnO3有明顯的改變,造成其在甲醇部分氧化反應上的差異,其中又以LaMnPd有最明顯的效果。波洛斯凱特觸媒的氧化還原特性可以促進甲醇部分氧化產生甲醛。因此,本研究也提出LaMnO3系波洛斯凱特觸媒進行甲醇部分氧化的反應機制。

This study investigates methanol partial oxidation over lanthanum transition metal based perovskites, i.e., LaBO3(B = Mn, Fe, and Co) and LaMn0.95 B’0.05O3(B’=Pd, Pt, and Rh). Their bulk and surface properties were characterized by appropriate physiochemical techniques including BET surface area measurement, XRD, EDS, XPS, H2-TPR, TPO, O2-TPD, and CH3OH-TPD. LaMnO3 shows better activity than LaFeO3 and LaCoO3. The major reaction route under oxidative environments is methanol combustion. The characterizations showed significant differences of reducibility and oxygen activity between promoted and un-promoted LaMnO3. Such deviants resulted in diverse catalytic behaviors in methanol partial oxidation. Among them, LaMnPd show the best performance. Perovskite’s redox property was discovered to enhance partial oxidation route to formaldehyde while oxygen activity played a central role in combustion. Accordingly, plausible reaction mechanism of methanol partial oxidation over LaMnO3 based perovskites was thereby proposed.

目錄
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
第一章 前言 1
1.1 引言 1
1.2 研究動機 9
第二章 文獻回顧 10
2.1 波洛斯凱特觸媒構造 10
2.2 波洛斯凱特觸媒特性 12
2.3 波洛斯凱特觸媒的製備 15
2.4甲醇部分氧化生成甲醛 16
2.5波洛斯凱特觸媒於甲醇氧化反應 20
第三章 實驗 22
3.1 X光繞射儀 22
3.2 比表面積分析儀 23
3.3 X 射線光電子能譜儀 24
3.4 掃描式電子顯微鏡 25
3.5程溫還原反應 26
3.6程溫氧化反應 27
3.7 氧程溫脫附反應 28
3.8 甲醇程溫脫附反應 29
3.9實驗設備和藥品 31
3.10 觸媒製備 32
3.11 活性測試 33
3.12 產物定性定量分析 34
第四章 結果與討論 40
4.1 不同B-site觸媒物性鑑定 40
4.2 不同B-site觸媒程溫還原分析 43
4.3 不同B-site觸媒進行TPR後之XRD分析 43
4.4 不同B-site觸媒氧程溫脫附分析 46
4.5 不同B-site觸媒活性測試 48
4.6 添加貴金屬之LaMn觸媒物性鑑定 52
4.7 添加貴金屬之LaMn觸媒XPS分析 55
4.8 添加貴金屬之LaMn觸媒程溫還原/氧化分析 58
4.9 添加貴金屬之LaMn觸媒程溫吸/脫附分析 58
4.10 添加貴金屬之LaMn觸媒活性測試 66
第五章 結論 75
第六章 未來方向 76
參考文獻 77
附件-發表文獻 88


參考文獻
1.C.N. Satterfield, ed. Heterogeneous Catalysis in Industrial Practice 2nd ed. 1991, McGraw-Hill: New York.
2.C.D. Chang, Hydrocarbons from methanol. Catalysis Reviews-Science and Engineering, 25, 1-118 (1983).
3.M. Roeper, Erdöl, Kohle, and Erdas, Oxygenated base chemicals from synthesis gas. Vol. 37. 1984: Petrochemie 506.
4.J.F. Walker, ed. Formaldehyde. 1964, Reinhold: New York.
5.M. Badlani and I.E. Wachs, Methanol: a "smart" chemical probe molecule. Catalysis Letters, 75, 137-149 (2001).
6.J.M. Tatibouet, Methanol oxidation as a catalytic surface probe. Applied Catalysis A-General, 148, 213-252 (1997).
7.G.A. Olah, After oil and gas: methanol economy. Catalysis Letters, 93, 1-2 (2004).
8.G.A. Olah, Beyond oil and gas: The methanol economy. Angewandte Chemie-International Edition, 44, 2636-2639 (2005).
9.Y.C. Lin, K.L. Hohn, and S.M. Stagg-Williams, Hydrogen generation from methanol oxidation on. supported Cu and Pt catalysts: Effects of active phases and supports. Applied Catalysis a-General, 327, 164-172 (2007).
10.J. Agrell, M. Boutonnet, and J.L.G. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts - Part II. Catalytic activity and reaction pathways. Applied Catalysis A-General, 253, 213-223 (2003).
11.M.P. Zum Mallen and L.D. Schmidt, Oxidation of methanol over polycrystalline Rh and Pt: Rates, OH desorption, and model. Journal of Catalysis, 161, 230-246 (1996).
12.C.-L. Li and Y.-C. Lin, Catalytic partial oxidation of methanol over copper–zinc based catalysts: a comparative study of alumina, zirconia, and magnesia as promoters. Catalysis Letters, 140, 69-76 (2010).
13.A.P.V. Soares, M.F. Portela, and A. Kiennemann, Methanol selective oxidation to formaldehyde over iron-molybdate catalysts. Catalysis Reviews: Science and Engineering, 47, 125 - 174 (2005).
14.C.H. Bartholomew and R.J. Farrauto, Fundamentals of industrial catalytic processes. 2nd ed. 2006: Wiley-Interscience.
15.http://www.platinum.matthey.com/.
16.Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature, 418, 164-167 (2002).
17.V.M. Godschmidt and S.N. Viedenk.-Akad., Kl. Part I. Mater.-Naturvidensk. Kl. (1926).
18.M.A. Pena and J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chemical Reviews, 101, 1981-2017 (2001).
19.G. Parravano, Ferroelectric transitions and heterogenous catalysis. The Journal of Chemical Physics, 20, 342 (1952).
20.D.B. Meadowcroft, Low-cost oxygen electrode material. Nature, 226, 847-848 (1970).
21.R.J.H. Voorhoeve, J.P. Remeika, and D.W. Johnson, Jr., Rare-earth manganites: catalysts with low ammonia yield in the reduction of nitrogen oxides. Science, 180, 62-64 (1973).
22.J.L.G. Fierro, Structure and composition of perovskite surface in relation to adsorption and catalytic properties. Catalysis Today, 8, 153-174 (1990).
23.T. Nitadori and M. Misono, Catalytic properties of La1-xAxFeO3(A=Sr, Ce) and La1-xCexCoO3. Journal of Catalysis, 93, 459-466 (1985).
24.R.J.H. Voorhoeve, J.P. Remeika, L.E. Trimble, A.S. Cooper, F.J. Disalvo, and P.K. Gallagher, Perovskite-like La1-xKxMnO3 and related compounds: Solid state chemistry and the catalysis of the reduction of NO by CO and H2. Journal of Solid State Chemistry, 14, 395-406 (1975).
25.H. Tanaka, An intelligent catalyst: the self-regenerative palladium-perovskite catalyst for automotive emissions control. Catalysis Surveys from Asia, 9, 63-74 (2005).
26.T. Shimizu, Activity of ethanol oxidation to acetaldehyde over La1-xSrxFeO3 and LaMeO3(Me=Co, Mn, Ni, Fe). Applied Catalysis, 28, 81-88 (1986).
27.B. Levasseur and S. Kaliaguine, Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding. Applied Catalysis A-General, 343, 29-38 (2008).
28.R. Spinicci, A. Tofanari, M. Faticanti, I. Pettiti, and P. Porta, Hexane total oxidation on LaMO3 (M = Mn, Co, Fe) perovskite-type oxides. Journal of Molecular Catalysis A: Chemical, 176, 247-252 (2001).
29.J.R. Mawdsley and T.R. Krause, Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Applied Catalysis A: General, 334, 311-320 (2008).
30.Å. Slagtern and U. Olsbye, Partial oxidation of methane to synthesis gas using La-M-O catalysts. Applied Catalysis A: General, 110, 99-108 (1994).
31.S.J. Singh and R.V. Jayaram, Oxidation of alkylaromatics to benzylic ketones using TBHP as an oxidant over LaMO3 (M = Cr, Co, Fe, Mn, Ni) perovskites. Catalysis Communications, 10, 2004-2007 (2009).
32.G. Kremenic, J.M.L. Nieto, J.M.D. Tascon, and L.G. Tejuca, Chemisorption and catalysis on LaMO3 oxides. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 81, 939-949 (1985).
33.A. Eyssler, P. Mandaliev, A. Winkler, P. Hug, O. Safonova, R. Figi, A. Weidenkaff, and D. Ferri, The effect of the state of Pd on methane combustion in Pd-doped LaFeO3. Journal of Physical Chemistry C, 114, 4584-4594 (2010).
34.N. Russo, P. Palmisano, and D. Fino, Pd substitution effects on perovskite catalyst activity for methane emission control. Chemical Engineering Journal, 154, 137-141 (2009).
35.K. Zhou, H. Chen, Q. Tian, Z. Hao, D. Shen, and X. Xu, Pd-containing perovskite-type oxides used for three-way catalysts. Journal of Molecular Catalysis A: Chemical, 189, 225-232 (2002).
36.S. Sartipi, A.A. Khodadadi, and Y. Mortazavi, Pd-doped LaCoO3 regenerative catalyst for automotive emissions control. Applied Catalysis B: Environmental, 83, 214-220 (2008).
37.S. Petrovic, V. Rakic, D.M. Jovanovic, and A.T. Baricevic, Oxidation of CO over Ru containing perovskite type oxides. Applied Catalysis B-Environmental, 66, 249-257 (2006).
38.U.G. Singh, J. Li, J.W. Bennett, A.M. Rappe, R. Seshadri, and S.L. Scott, A Pd-doped perovskite catalyst, BaCe1-xPdxO3-delta, for CO oxidation. Journal of Catalysis, 249, 349-358 (2007).
39.M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to from a capacitor. U. S. Patent, No. 3330697, (1967).
40.Y. Shimizu and T. Murata, Sol-gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly(vinyl alcohol). Journal of the American Ceramic Society, 80, 2702-2704 (1997).
41.I. Rossetti and L. Forni, Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis. Applied Catalysis B: Environmental, 33, 345-352 (2001).
42.B. Levasseur and S. Kaliaguine, Effect of the rare earth in the perovskite-type mixed oxides AMnO(3) (A = Y, La, Pr, Sm, Dy) as catalysts in methanol oxidation. Journal of Solid State Chemistry, 181, 2953-2963 (2008).
43.S. Royer, F. Bérubé, and S. Kaliaguine, Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1-xFexO3. Applied Catalysis A: General, 282, 273-284 (2005).
44.P. Forzatti, On the deactivation of Fe2O3-MoO3/SiO2 catalysts in the oxidation of methanol to formaldehyde. Reaction Kinetics and Catalysis Letters, 20, 213-218 (1982).
45.W.E. Farneth, F. Ohuchi, R.H. Staley, U. Chowdhry, and A.W. Sleight, Mechanism of partial oxidation of methanol over MoO3 as studied by temperature-programmed desorption. Journal of Physical Chemistry, 89, 2493-2497 (1985).
46.T.-J. Yang and J.H. Lunsford, Partial oxidation of methanol to formaldehyde over molybdenum oxide on silica. Journal of Catalysis, 103, 55-64 (1987).
47.I.E. Wachs and R.J. Madix, The selective oxidation of CH3OH to H2CO on a copper(110) catalyst. Journal of Catalysis, 53, 208-227 (1978).
48.M.A. Barteau, M. Bowker, and R.J. Madix, Acid-base reaction on solid-surfaces - the reactions of HCOOH, H2CO, and HCOOCH3 with oxygen on Ag(110). Surface Science, 94, 303-322 (1980).
49.C.J. Machiels and A.W. Sleight, Kinetic isotope effect in the selective oxidation of methanol to formaldehyde over some molybdate catalysts. Journal of Catalysis, 76, 238-239 (1982).
50.S.K. Bhattacharyya, K. Janakiram, and N.D. Ganguly, Kinetics of the vapor-phase oxidation of methyl alcohol on vanadium pentoxide catalyst. Journal of Catalysis, 8, 128-136 (1967).
51.M.P. House, A.F. Carley, and M. Bowker, Selective oxidation of methanol on iron molybdate catalysts and the effects of surface reduction. Journal of Catalysis, 252, 88-96 (2007).
52.M.P. House, A.F. Carley, R. Echeverria-Valda, and M. Bowker, Effect of varying the cation ratio within iron molybdate catalysts for the selective oxidation of methanol. Journal of Physical Chemistry C, 112, 4333-4341 (2008).
53.I.E. Wachs, Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 100, 79-94 (2005).
54.M.V. Martinez-Huerta, G. Deo, J.L.G. Fierro, and M.A. Banares, Operando Raman-GC study on the structure-activity relationships in V5+/CeO2 catalyst for ethane oxidative dehydrogenation: The formation of CeVO4. Journal of Physical Chemistry C, 112, 11441-11447 (2008).
55.R.S. Mann and M.K. Dosi, Kinetics of vapor-phase oxidation of methyl alcohol on vanadium pentoxide-molybdenum trioxide catalyst. Journal of Catalysis, 28, 282-288 (1973).
56.G. Deo and I.E. Wachs, Reactivity of supported vanadium oxide catalysts: The partial oxidation of methanol. Journal of Catalysis, 146, 323-334 (1994).
57.M. Baltes, K. Cassiers, P. Van Der Voort, B.M. Weckhuysen, R.A. Schoonheydt, and E.F. Vansant, MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO(acac)2: A detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx. Journal of Catalysis, 197, 160-171 (2001).
58.S. Lim and G.L. Haller, Gas phase methanol oxidation on V-MCM-41. Applied Catalysis A: General, 188, 277-286 (1999).
59.G.C. Bond and S.F. Tahir, Vanadium oxide monolayer catalysts preparation, characterization and catalytic activity. Applied Catalysis, 71, 1-31 (1991).
60.I.E. Wachs, G. Deo, M.A. Vuurman, H. Hu, D.S. Kim, and J.-M. Jehng, Molecular design of supported metal oxide catalysts: An initial step to theoretical models. Journal of Molecular Catalysis, 82, 443-455 (1993).
61.I.E. Wachs, Molecular engineering of supported metal oxide catalysts: oxidation reactions over supported vanadia catalysts. Catalysis 13, 37-54 (1997).
62.J.L. Bronkema, D.C. Leo, and A.T. Bell, Mechanistic studies of methanol oxidation to formaldehyde on isolated vanadate sites supported on high surface area anatase. Journal of Physical Chemistry C, 111, 14530-14540 (2007).
63.J.L. Bronkema and A.T. Bell, Mechanistic studies of methanol oxidation to formaldehyde on isolated vanadate sites supported on high surface area zirconia. Journal of Physical Chemistry C, 112, 6404-6412 (2008).
64.A. Goodrow and A.T. Bell, A theoretical investigation of the selective oxidation of methanol to formaldehyde on isolated vanadate species supported on titania. Journal of Physical Chemistry C, 112, 13204-13214 (2008).
65.W.C. Vining, A. Goodrow, J. Strunk, and A.T. Bell, An experimental and theoretical investigation of the structure and reactivity of bilayered VOx/TiOx/SiO2 catalysts for methanol oxidation. Journal of Catalysis, 270, 163-171 (2010).
66.J.L. Bronkema and A.T. Bell, Mechanistic studies of methanol oxidation to formaldehyde on isolated vanadate sites supported on MCM-48. Journal of Physical Chemistry C, 111, 420-430 (2007).
67.A. Goodrow and A.T. Bell, A theoretical investigation of the selective oxidation of methanol to formaldehyde on isolated vanadate species supported on silica. Journal of Physical Chemistry C, 111, 14753-14761 (2007).
68.A. Ueda, Y. Yamada, M. Katsuki, T. Kiyobayashi, Q. Xu, and N. Kuriyama, Perovskite catalyst (La, Ba)(Fe, Nb, Pd)O-3 applicable to NOx storage and reduction system. Catalysis Communications, 11, 34-37 (2009).
69.G.C.M. Rodriguez, B. Saruhan, O. Petrova, and W. Grunert, Pd-integrated perovskite as effective catalyst for selective catalytic reduction of NOx by propene. Topics in Catalysis, 52, 1723-1727 (2009).
70.J.J. Zhu and A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B-Environmental, 92, 225-233 (2009).
71.H. Taguchi, S. Yamasaki, A. Itadani, M. Yosinaga, and K. Hirota, CO oxidation on perovskite-type LaCoO3 synthesized using ethylene glycol and citric acid. Catalysis Communications, 9, 1913-1915 (2008).
72.P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, and P. Porta, La, Ca and Fe oxide perovskites: preparation, characterization and catalytic properties for methane combustion. Applied Catalysis B-Environmental, 33, 193-203 (2001).
73.L. Lisi, G. Bagnasco, P. Ciambelli, S. De Rossi, P. Porta, G. Russo, and M. Turco, Perovskite-type oxides - II. Redox properties of LaMn1-xCuxO3 and LaCo1-xCuxO3 and methane catalytic combustion. Journal of Solid State Chemistry, 146, 176-183 (1999).
74.K.S. De and M.R. Balasubramanian, Cubic hypovanadate perovskite as an oxidation catalyst. Journal of Catalysis, 81, 482-484 (1983).
75.J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J.M. Bassat, V. Rives, and L. Minchev, X-ray photoelectron-spectroscopy, temperature-programmed desorption and temperature-programmed reduction study of LaNiO3 and La2NiO4+delta catalysts for methanol oxidation. Journal of the Chemical Society-Faraday Transactions, 90, 1987-1991 (1994).
76.J.N. Kuhn and U.S. Ozkan, Surface properties of Sr- and Co-doped LaFeO3. Journal of Catalysis, 253, 200-211 (2008).
77.A. Galenda, M.M. Natile, L. Nodari, and A. Glisenti, La0.8Sr0.2Ga0.8Fe0.2O3-[delta]: Influence of the preparation procedure on reactivity toward methanol and ethanol. Applied Catalysis B: Environmental, 97, 307-322 (2010).
78.C.-L. Li, C.-L. Wang, and Y.-C. Lin, Pd-integrated lanthanum-transition metal perovskites for methanol partial oxidation. Catalysis Today, In Press, Corrected Proof.
79.B. Kucharczyk and W. Tylus, Effect of Pd additive on the activity of monolithic LaMnO3-based catalysts for methane combustion. Catalysis Today, 137, 318-323 (2008).
80.M. Crespin and W.K. Hall, The surface chemistry of some perovskite oxides. Journal of Catalysis, 69, 359-370 (1981).
81.R.D. Zhang, H. Alamdari, and S. Kallaguine, Fe-based perovskites substituted by copper and palladium for NO plus CO reaction. Journal of Catalysis, 242, 241-253 (2006).
82.S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir, and R. Muzychuk, Perovskite-type oxides synthesized by reactive grinding: Part I. Preparation and characterization. Applied Catalysis A: General, 209, 345-358 (2001).
83.D. Briggs and M.P. Seah, Practical structure analysis. 1993, Chichester: John Wiley.
84.M. Uenishi, M. Taniguchi, H. Tanaka, M. Kimura, Y. Nishihata, J. Mizuki, and T. Kobayashi, Redox behavior of palladium at start-up in the perovskite-type LaFePdOx automotive catalysts showing a self-regenerative function. Applied Catalysis B-Environmental, 57, 267-273 (2005).
85.E. Tzimpilis, N. Moschoudis, M. Stoukides, and P. Bekiaroglou, Preparation, active phase composition and Pd content of perovskite-type oxides. Applied Catalysis B-Environmental, 84, 607-615 (2008).
86.J.P. Dacquin, M. Cabie, C.R. Henry, C. Lancelot, C. Dujardin, S.R. Raouf, and P. Granger, Structural changes of nano-Pt particles during thermal ageing: Support-induced effect and related impact on the catalytic performances. Journal of Catalysis, 270, 299-309 (2010).
87.J. Knecht and G. Stork, Röntgenphotoelektronen —spektroskopische Untersuchung der Thallium-Oxidelektrode. Fresenius'' Journal of Analytical Chemistry, 289, 206-206 (1978).
88.H.J. Gysling, J.R. Monnier, and G. Apai, Synthesis, characterization, and catalytic activity of LaRhO3. Journal of Catalysis, 103, 407-418 (1987).
89.Y.T. N. Yamazoe, T. Seiyama, TPD and XPS study on thermal behavior of absorbed oxygen in La1-XSrXCoO3. Chemistry Letters, 10, 1767-1770 (1981).
90.M. Machkova, N. Brashkova, P. Ivanov, J.B. Carda, and V. Kozhukharov, Surface behavior of Sr-doped lanthanide perovskites. Applied Surface Science, 119, 127-136 (1997).
91.W.J. Shen, M. Okumura, Y. Matsumura, and M. Haruta, The influence of the support on the activity and selectivity of Pd in CO hydrogenation. Applied Catalysis A-General, 213, 225-232 (2001).
92.N. Lakshminarayanan, H. Choi, J.N. Kuhn, and U.S. Ozkan, Effect of additional B-site transition metal doping on oxygen transport and activation characteristics in La0.6Sr0.4(Co0.18Fe0.72X0.1)O3-[delta] (where X = Zn, Ni or Cu) perovskite oxides. Applied Catalysis B: Environmental, 103, 318-325 (2011).
93.S. Cimino, S. Colonna, S. De Rossi, M. Faticanti, L. Lisi, I. Pettiti, and P. Porta, Methane Combustion and CO Oxidation on Zirconia-Supported La, Mn Oxides and LaMnO3 Perovskite. Journal of Catalysis, 205, 309-317 (2002).
94.T. Seiyama, N. Yamazoe, and K. Eguchi, Characterization and activity of some mixed metal oxide catalysts. Ind. Eng. Chem. Prod. Res. Dev., 24, 19-27 (1985).




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔