跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:a8de:191f:a29b:1858) 您好!臺灣時間:2025/01/13 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹光宇
研究生(外文):Kuang-Yu Chan
論文名稱:從無血清增殖後的造血幹細胞誘導成樹突狀細胞之探討研究
論文名稱(外文):Induction of Dendritic Cells from Serum-Free Expanded Hematopoietic Stem Cells
指導教授:姚少凌
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:樹突狀細胞造血幹細胞
外文關鍵詞:Dendritic cellshematopoietic stem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樹突狀細胞是目前在人體內,被認定功能最強大的抗原呈現細胞,其可從造血幹細胞分化而來,因此本實驗是利用了體外無血清增殖造血幹細胞的技術,來做為大量生產樹突狀細胞的來源,並進一步找尋樹突狀細胞的誘導培養基配方與細胞激素最適化的組成。
根據文獻中的探討,並經由實驗測試,得知SCF、Flt-3 ligand、IL-1β、GM-CSF和TNF-α等五種細胞激素對於樹突狀細胞的誘導與分化是有正向幫助的,而後再利用陡升路徑法,找出其最適化的濃度。
除了細胞激素的找尋之外,同時還測試了不同種類的基礎培養基,如IMDM、RPMI-1640、M-199、α-MEM、H3000、DMEM/F12 與 DMEM,再配合已實驗測試出的細胞激素最適化濃度組成,最後可建立樹突狀細胞誘導與分化的最適化誘導培養基。
在建立最適化誘導培養基之後,進一步再檢測樹突狀細胞的特性,如經脂多醣刺激成熟前後之表面抗原測試分析 (CD1a、CD11c、CD14、CD40、CD80、CD83、CD86、HLA-DR、CD45 和 CD34),利用Mixed Lymphocyte Reaction (MLR) 來檢測其誘導CD3+ T細胞增生的功能性,檢測吞噬能力與特定細胞激素的分泌能力等。
希望藉此研究建立能大量量產及功能性樹突狀細胞的誘導培養系統,並以此建立本實驗室未來對於樹突狀細胞後續研究的根基。

Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs) and play a pivotal role in initiating the immune response, which differentiated from CD133+ hematopoietic stem cells (HSCs). Hence, we used the ex vivo expanded of hematopoietic stem cells as a source of DCs, and developed the optimal DCs induction medium.
In the previous study, we had developed a serum-free hematopoietic stem cells expansion system (SF-HSC medium), HSCs could expand in SF-HSC medium reaching 30-fold within one week.
According to the past researches, several cytokines, especially SCF, Flt-3 ligand, IL-1β, GM-CSF and TNF-α, have been identified as essential factors to induce and differentiate HSCs into DCs. Moreover, we tested the basal media (IMDM, RPMI-1640, M-199, α-MEM, H3000, DMEM/F12 and DMEM) combined with the various concentration of cytokines to finalize the optimal DC induction medium.
Finally, we confirmed the function and maturation of DCs by the assays of the mixed lymphocyte reaction (MLR), the ability of endocytosis, specific cytokines of secretion and the stimulation by lipopolysaccharides. When DCs become mature (mDCs), the specific surface markers of mDCs would change (CD1a, CD11c, CD14, CD40, CD80, CD83, CD86, HLA-DR, CD45 and CD34), the ability of endocytosis would be more complete and the ability of stimulation would increase when co-cultured with CD3+ T cells.
These results showed that DCs derived from the serum-free expanded CD133+ HSCs exhibited both characteristics and functions of DCs. Therefore, we believed that combination of HSCs serum-free expansion medium and DCs induction medium would generate large amounts of functional DCs and would be a promising cell source for the basic research and translation media in the near future.

摘要 …………………………………………………………………………… I
Abstract ……………………………………………………………………… III
目錄 ………………………………………………………………………… V
表目錄 ……………………………………………………………………… VII
圖目錄 …………………………………………………………………… VIII
第一章 緒論 ………………………………………………………………… 1
1.1 楔子………………………………………………………………… 1
1.2 研究動機與目的 …………………………………………………… 1
1.3 研究架構 …………………………………………………………… 2
第二章 幹細胞與樹突細胞之發展與介紹 ………………………………… 5
2.1 幹細胞 (stem cell) 簡介 ………………………………………… 5
2.1.1 幹細胞定義 …………………………………………………… 5
2.1.2 幹細胞的分類 ………………………………………………… 6
2.1.3 幹細胞的來源 ………………………………………………… 8
2.2 造血幹細胞 (hematopoietic stem cells, HSCs) 簡介 …………… 10
2.2.1 造血幹細胞與造血系統 ……………………………………… 10
2.2.2 造血幹細胞的鑑定 …………………………………………… 12
2.2.3 造血幹細胞的應用 ………………………………………… 14
2.3 樹突狀細胞 (dendritic cells, DCs) 簡介 ……………………… 14
2.3.1 樹突狀細胞的型態與生理位置 ……………………………… 14
2.3.2 樹突狀細胞的鑑定 …………………………………………… 15
2.3.3 主要機制 …………………………………………………… 16
2.3.4 目前遇到的問題 …………………………………………… 17
第三章 實驗材料與方法 …………………………………………………… 19
3.1 實驗儀器 ………………………………………………………… 19
3.2 實驗藥品與材料 ………………………………………………… 19
3.3 實驗步驟 ………………………………………………………… 23
3.3.1 從臍帶血中分離出CD133+的造血幹細胞 ………………… 24
3.3.2 細胞培養 (cell culture) ……………………………………… 25
3.3.3 增值後的造血幹細胞的初步誘導成樹突細胞 ……………… 26
3.3.4 細胞冷凍保存 ………………………………………………… 26
3.3.5 細胞激素 (cytokine) 最適化篩選 ………………………… 27
3.3.6 流式細胞儀分析 ……………………………………………… 30
3.3.7 樹突狀細胞成熟的刺激 ……………………………………… 32
3.3.8 吞噬能力 (Endocytosis) 分析 ……………………………… 32
3.3.9 細胞激素分泌 ………………………………………………… 33
3.3.10 T細胞刺激生長 (Mixed Lymphocyte Reaction, MLR) 33
第四章 實驗結果與討論 …………………………………………………… 35
4.1 樹突狀細胞誘導的可行性分析 ………………………………… 35
4.2 細胞激素之因子試驗篩選結果與分析 ………………………… 38
4.2.1 初篩因子試驗分析 ………………………………………… 38
4.2.2 複篩因子試驗分析 ………………………………………… 44
4.3 藉陡升路徑法找最適化細胞激素組成濃度 ………………… 51
4.3.1 陡升路徑之樹突狀細胞誘導結果 ……………………… 52
4.4 基礎培養基 (basal media) 之比較 …………………………… 59
4.4.1 基礎培養基的選擇 ………………………………………… 59
4.4.2 樹突狀細胞之誘導結果 …………………………………… 60
4.5 樹突狀細胞表面抗原分析 …………………………………… 65
4.5.1 樹突狀細胞表面抗原比例分析結果 …………………… 65
4.5.2 成熟樹突狀細胞表面抗原變化 …………………………… 72
4.6 吞噬能力 (Endocytosis) 分析 ………………………………… 79
4.6.1 吞噬能力的結果與數量表現 ……………………………… 80
4.7 細胞激素分泌量測試 …………………………………………… 82
4.7.1 細胞激素濃度分析結果 …………………………………… 82
4.8 T細胞刺激生長實驗 (MLR) ………………………………… 84
4.8.1 共同培養結果分析 ………………………………………… 85
第五章 結論與未來展望 …………………………………………………… 88
5.1 結論 ……………………………………………………………… 88
5.2 未來展望 ………………………………………………………… 90
參考文獻 …………………………………………………………………… 91

[1]C. L. Yao, et al., "Factorial designs combined with the steepest ascent method to optimize serum-free media for ex vivo expansion of human hematopoietic progenitor cells," Enzyme and Microbial Technology, vol. 33, pp. 343-352, 2003.
[2]K. A. Moore, et al., "In vitro maintenance of highly purified, transplantable hematopoietic stem cells," Blood, vol. 89, pp. 4337-4347, 1997.
[3]G. H. Danet, et al., "Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34+ cells after ex vivo expansion," Experimental Hematology, vol. 29, pp. 1465-1473, 2001.
[4]E. Fuchs and J. A. Segre, "Stem cells: A new lease on life," Cell, vol. 100, pp. 143-155, 2000.
[5]I. L. Weissman, "Stem cells: Units of development, units of regeneration, and units in evolution," Cell, vol. 100, pp. 157-168, 2000.
[6]K. A. Jackson, et al., "Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells," Journal of Clinical Investigation, vol. 107, pp. 1395-1402, 2001.
[7]F. M. Watt and B. L. M. Hogan, "Out of eden: Stem cells and their niches," Science, vol. 287, pp. 1427-1430, 2000.
[8]http://www.nih.gov/news/stemcell/primer.htm
[9]M. J. Shamblott, et al., "Derivation of pluripotent stem cells from cultured human primordial germ cells," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 13726-13731, 1998.
[10]J. A. Thomson, "Embryonic stem cell lines derived from human blastocysts," Science, vol. 282, pp. 1145-1147, 1998.
[11]P. A. Zuk, et al., "Multilineage cells from human adipose tissue: Implications for cell-based therapies," Tissue Engineering, vol. 7, pp. 211-228, 2001.
[12]D. S. Krause, et al., "Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell," Cell, vol. 105, pp. 369-377, 2001.
[13]C. Cutler and J. H. Antin, "Peripheral blood stem cells for allogeneic transplantation: A review," Stem Cells, vol. 19, pp. 108-117, 2001.
[14]T. A. McAdams, et al., "Hematopoietic cell culture therapies (Part I): Cell culture considerations," Trends in Biotechnology, vol. 14, pp. 341-349, 1996.
[15]P. Flores-Guzman, et al., "In vitro proliferation, expansion, and differentiation of a CD34+ cell-enriched hematopoietic cell population from human umbilical cord blood in response to recombinant cytokines," Archives of Medical Research, vol. 33, pp. 107-114, 2002.
[16]C. M. Baum, et al., "Isolation of a candidate human hematopoietic stem-cell population," Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 2804-2808, 1992.
[17]A. D. Whetton and G. J. Graham, "Homing and mobilization in the stem cell niche," Trends in Cell Biology, vol. 9, pp. 233-238, 1999.
[18]A. H. Yin, et al., "AC133, a novel marker for human hematopoietic stem and progenitor cells," Blood, vol. 90, pp. 5002-5012, 1997.
[19]M. Bhatia, "AC133 expression in human stem cells," Leukemia, vol. 15, pp. 1685-1688, 2001.
[20]E. A. De Wynter, et al., "CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors," Stem Cells, vol. 16, pp. 387-396, 1998.
[21]S. Scheding, et al., "Ex vivo expansion of hematopoietic progenitor cells for clinical use," Seminars in Hematology, vol. 35, pp. 232-240, 1998.
[22]C. Von Kalle, et al., "New developments in hematopoietic stem cell expansion," Current Opinion in Hematology, vol. 5, pp. 79-86, 1998.
[23]P. D. Conrad and S. G. Emerson, "Ex vivo expansion of hematopoietic cells from umbilical cord blood for clinical transplantation," Journal of Leukocyte Biology, vol. 64, pp. 147-155, 1998.
[24]J. A. LaIuppa, et al., "Ex vivo expansion of hematopoietic stem and progenitor cells for transplantation," Cancer treatment and research, vol. 77, pp. 159-186, 1997.
[25]R. Hoffman, "Progress in the development of systems for in vitro expansion of human hematopoietic stem cells," Current Opinion in Hematology, vol. 6, pp. 184-191, 1999.
[26]A. Encabo, et al., "Selective generation of different dendritic cell precursors from CD34+ cells by interleukin-6 and interleukin-3," Stem Cells, vol. 22, pp. 725-740, 2004.
[27]C. Caux, et al., "CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte- macrophage colony-stimulating factor plus tumor necrosis factor α: II. Functional analysis," Blood, vol. 90, pp. 1458-1470, 1997.
[28]A. Curti, et al., "Dendritic cell differentiation from hematopoietic CD34+ progenitor cells," Journal of Biological Regulators and Homeostatic Agents, vol. 15, pp. 49-52, 2001.
[29]K. Sato, et al., "Generation of Dendritic Cells from Fresh and Frozen Cord Blood CD34+ Cells," Cryobiology, vol. 37, pp. 362-371, 1998.
[30]F. E. Borras, et al., "Dendritic cells can be successfully generated from CD34+ cord blood cells in the presence of autologous cord blood plasma," Bone Marrow Transplantation, vol. 26, pp. 371-376, 2000.
[31]A. Curti, et al., "Stem cell factor and FLT3-ligand are strictly required to sustain the long-term expansion of primitive CD34+DR- dendritic cell precursors," Journal of Immunology, vol. 166, pp. 848-854, 2001.
[32]R. Syme, et al., "Comparison of CD34 and monocyte-derived dendritic cells from mobilized peripheral blood from cancer patients," Stem Cells, vol. 23, pp. 74-81, 2005.
[33]L. Kobari, et al., "Ex vivo expansion does not alter the capacity of umbilical cord blood CD34+ cells to generate functional T lymphocytes and dendritic cells," Stem Cells, vol. 24, pp. 2150-2157, 2006.
[34]X. D. Nguyen, et al., "Flow cytometric analysis of T cell proliferation in a mixed lymphocyte reaction with dendritic cells," Journal of Immunological Methods, vol. 275, pp. 57-68, 2003.



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文