(44.192.66.171) 您好!臺灣時間:2021/05/18 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李宜庭
研究生(外文):Yi-Ting Li
論文名稱:鋰離子電池LiFePO4正極材料之合成及其性質研究
論文名稱(外文):Synthesis and Properties of LiFePO4 cathode Materials for Lithium-Ion Battery
指導教授:洪逸明
指導教授(外文):I-Ming Hung
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:124
中文關鍵詞:鋰離子電池陰極磷酸鋰鐵水熱法
外文關鍵詞:Li-ion BatterycathodeLiFePO4Hydrothermal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用兩種不同的製程製備LiFePO4正極材料, Citrate-EDTA 及水熱法。Citrate-EDTA技術具有同時螯合多種金屬離子且其成本低之特性。在空氣中不同煆燒溫度分別為400、500、600、700oC,探討溫度對LiFePO4粉末電化學性質之影響。再將經不同煆燒溫度過後的粉末,經過還原氣氛下煆燒探討,還原氣氛對LiFePO4粉末電化學性質之影響。第二種製程利用水熱法在高溫高壓下進行快速且劇烈的化學反應,合成出高純度、顆粒小且結晶性佳之LiFePO4粉末。藉由調整不同pH值觀察其表面形態且在不同氣氛下煆燒,觀察其對其電化學性質之影響。利用X光繞射分析(XRD)鑑定其結構、場發射電子掃描顯微鏡分析(FE-SEM)煆燒過後粉末顆粒大小及型貌、雷射拉曼散射光譜儀(Raman)分析粉末表面鍵結、光電子能譜儀(XPS)進行元素價數探討、能量分散光譜儀-元素分析(EDS-Mapping)觀察元素分佈。
由放電平台得知利用Citrate-EDTA方式在不同溫度下製備正極材料會在2.9V及2.7V出現兩個放電平台與LiFePO4原本3.4V的放電平台不同,由XRD分析得知利用Citrate-EDTA合成法在不同煆燒溫度下製備之粉末皆為Li3Fe2(PO4)3結構。經還原處理過後則轉變為單相LiFePO4。在不同pH值下利用水熱法合成之粉末為單一相斜方晶系的橄欖石結構之LiFePO4;Citrate-EDTA法隨著前處理溫度升高LiFePO4粉末晶粒會隨之成長且會有團聚燒結的現象發生。相較之下水熱法可以合成出小晶粒的粉末,調整pH值有助於表面形態由桿狀轉變為球型,但其晶粒大小也會隨成長且出現團聚現象;Citrate-EDTA法合成之粉末晶粒較大,大晶粒會增加鋰離子在材料內部擴散的距離致其電化學性質不佳,電容量僅為 45 mAh/g;水熱法合成小尺寸的粉末有助於縮短鋰離子在材料內部的擴散距離,且表面有導電碳層的分布使其有較佳的電化學性質。
利用水熱法經氬氣氣氛下煆燒之LiFePO4粉末在0.1C及1C下進行放電測試,其慢速充放電電容量較在氫氣氣氛下煆燒之LiFePO4電化學佳。在pH=5 所合成並在氬氣氣氛下煆燒之LiFePO4粉末,在0.1C下放電電容量為160 mAh/g與理論值相近。經氫氣還原後之LiFePO4粉末則有較佳之快速充放電性質,由EIS結果顯示經過氫氣煆燒過後較經氬氣煆燒之LiFePO4具有較小之介面轉移電阻,其結果對應充放電測試可以發現電阻值越小其極化效應越小,具有較好的快速充放電性質。


In this study, LiFePO4 powders were prepared by two different methods. In the first method, the LiFePO4 powder was prepared by Citrate-EDTA complexing method. This technology has chelate metal ion and low cost. The effect of calcinations temperature in the range of 400~700oC on the LiFePO4 powder were investigated.. The electrochemical properties of LiFePO4 powders calcined in H2 atmosphere more also discussed In Second method, high temperature and pressure conditions were used in hydrothermal method for the rapid and violent reaction to synthesize high purity, small particle size and good crystalline LiFePO4 powders. The surface morphology of LiFePO4 powder prepared from different pH value was observed The crystalline structure, particle morphology, surface bonding, elements valence and elements distribution were characterized by XRD, FE-SEM, Raman spectroscopy, XPS and EDS-mapping, respectively.
The discharge voltage plate shows that the use of Citrate-EDTA complexing method, prepared at different temperature, has two plate at 2.9 and 2.7V which differs from the theoretical voltage plate of 3.4V. The XRD pattern shows Li3Fe2(PO4)3 structure in the LiFePO4 powder prepared by Citrate-EDTA complexing method at different temperature in the air. But LiFePO4 structure was observed after calcined at H2 atmosphere. LiFePO4 powders were prepared by hydrothermal method form different pH value solution and calcined at 700oC. The structure of all LiFePO4 sample is orthorhombic olivine type structure. The calcined temperature in Citrate-EDTA complexing method has an important effect on the LiFePO4 particle size growth and particle aggregation. In hydrothermal method when the pH value increased from 5 to 9, the morphology of the particle changed from rod to spherical-like with small sized powder. The powder size prepared in Citrate-EDTA complexing method is larger than the hydrothermal method. A large aggregated particle size will lead a long diffusion distance for lithium-ion intercalate and deintercalate in LiFePO4 structure. Therefore, they did not exhibit good electrochemical properties and the capacity was about 45 mAh/g. On the contrary, the hydrothermal method can synthesize small particle size, which exhibit a better electrochemical performance due to its short diffusion distance and has a uniform carbon layer on the particle surface.
LiFePO4 powders prepared by hydrothermal method calcined in Air with discharge rates of 0.1C and 1C, are better than calcined in H2 atmosphere. The capacity of the LiFePO4 powder prepared in Air atmosphere at pH-5 is 160 mAh/g, which is close to the theoretical capacity. LiFePO4 powder prepared by hydrothermal method and calcined in H2 atmosphere, has a better capacity at the high discharge rate. EIS shows the result of the LiFePO4 calcined in H2 atmosphere has small charge transfer resistance than calcined in Air atmosphere. From the charge-discharge curve, the small charge transfer resistance has small polarization phenomenon with better discharge capacity at high discharge rate.


總目錄
摘要 II
Abstract IV
致謝 VI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 文獻回顧 3
2-1 鋰離子二次電池組成及其工作原理 3
2-2鋰電池的各元件介紹: 7
2-2-1負極材料(Anode) 7
2-2-2正極材料(Cathode) 7
2-2-3電解質(Electrolyte) 7
2-2-4隔離膜 8
2-3正極材料之簡介 9
2-3-1鋰鈷氧化物(LiCoO2) 9
2-3-2鋰鎳氧化物(LiNiO2) 9
2-3-3鋰錳氧化物(LiMn2O4) 9
2-3-4磷酸鋰鐵(LiFePO4) 10
2-4 LiFePO4正極材料介紹 12
2-5鋰離子電池的理論電容量 15
2-6正極材料之合成方法介紹 15
2-6-1 Citrate-EDTA合成法 15
2-6-2水熱法 16
第三章 實驗方法與步驟 18
3-1實驗器材 18
3-1-1化學藥品 18
3-1-2實驗器材及設備 19
3-2實驗步驟 20
3-2-1以Citrate-EDTA 合成LiFePO4實驗步驟: 20
3-2-2以水熱法合成LiFePO4實驗步驟 22
3-2-3極片製作及電池組裝流程 24
3-4 LiFePO4材料分析與電化學性質測試 27
3-4-1 X光繞射分析 (X-ray diffraction,XRD) 27
3-4-2場發射式電子掃描顯微鏡(Field Emission Scanning Electron Microscope,FE-SEM) 27
3-4-3 X-光射線光電子光譜分析儀(X-ray photoelectron spectroscopy,XPS) 27
3-4-4雷射拉曼散射光譜儀(Laser Raman Scattering Spectromter) 28
3-4-5穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 28
3-4-6能量分散光譜儀(Energy Dispersive X-ray Spectroscopy,EDS) 28
3-4-7連續循環充放電測試 29
3-4-8交流阻抗分析(AC impedance,AC) 29
第四章、結果與討論 30
4-1 Citrate-EDTA合成正極材料分析 30
4-1-1場發射式電子掃描顯微鏡測定(FE-SEM) 30
4-1-2不同速率充放電測試 30
4-1-3 X光繞射分析(XRD) 38
4-1-4雷射拉曼散射光譜儀(Raman) 38
4-1-4穿透式電子顯微鏡分析 (TEM) 38
4-2 Citrate-EDTA法合成經氫氣還原氣氛處理之LiFePO4粉末分析 42
4-2-1 X光繞射分析(XRD) 42
4-2-2場發式電子顯微鏡測定(FE-SEM) 42
4-2-3雷射拉曼散射光譜儀(Raman) 45
4-2-4穿透式電子顯微鏡分析 (TEM) 45
4-2-5能量分散光譜儀(EDS-mapping) 48
4-2-6不同速率充放電測試 48
4-3水熱法合成LiFePO4正極材料粉末材料分析 59
4-3-1 X光繞射分析(XRD) 59
4-3-2場發式電子顯微鏡測定(FE-SEM) 59
4-3-3雷射拉曼散射光譜儀(Raman) 63
4-3-4 穿透式電子顯微鏡分析 (TEM) 65
4-3-5能量分散光譜儀(EDS-mapping) 65
4-3-6光電子能譜儀(XPS) 75
4-3-7 不同速率的充放電測試 75
4-3-8 EIS阻抗分析 86
4-4水熱法合成LiFePO4粉末經氫氣還原氣氛之材料分析 91
4-4-1 X光繞射分析(XRD) 91
4-4-2場發式電子顯微鏡測定(FE-SEM) 92
4-4-3雷射拉曼散射光譜儀(Raman) 92
4-4-4穿透式電子顯微鏡分析 (TEM) 97
4-4-5能量分散光譜儀(EDS-mapping) 97
4-4-6光電子能譜儀(XPS) 103
4-4-7不同速率的充放電測試 105
4-4-8 EIS阻抗分析 106
第五章 結論 116
參考文獻 118



參考文獻
[1]R. Koksbang, J. Barker, H. Shi and M. Y. Saidi, "Cathode materials for lithium rocking chair batteries", Solid State Ionics, vol. 84, pp. 1-21, 1995.
[2]D.W. Murphy, F.J. Di Salvo, J.N. Carides and J.V. Waszczak, "Topochemical reactions of rutile related structures with lithium", Materials research bulletin, vol. 13, pp. 1395-1402, 1978.
[3]洪為民,’’二次鋰離子電池產品介紹和性能介紹’’,工業材料117 期,pp. 54-62, 1996.
[4]楊家諭,’’二次鋰離子電池性能介紹’’,工業材料126 期,pp. 115-124, 1997.
[5]A. Kuwahara , S. Suzuki and M. Miyayama, "Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties", Journal of Electroceram, vol. 24, pp. 69-75, 2010.
[6]Z, Wang, S. Su, C. Yu, Y. Chen and D. Xia, "Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method ", Journal of Power Sources , vol. 184, pp. 633-636, 2008.
[7]Z. Liu, X. Zhang and L. Hong, "Preparation and electrochemical properties of spherical LiFePO4 and LiFe0.9Mg0.1PO4 cathode materials for lithium rechargeable batteries", Journal of Appl Electrochem. vol. 39, pp. 2433-2438, 2009
[8]J. Yang and J. J. Xu, "Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route", Journal of Electrochemical Society, vol. 153, pp. A716-A723, 2006.
[9]A. V. Murugan, T. Muraliganth and A. Manthiram, "One-pot microwave-hydrothermal synthesis and characterization of carbon -coated LiMPO4 (M = Mn, Fe, and Co) cathodes ", Journal of Electrochemical Society, vol. 156, pp. A79-A83, 2009.
[10]N. Hua, C. Wang, X. Kang, T. Wumair and Y. Han, "Studies of V doping for the LiFePO4-base Li Ion batteries", Journal of Alloys and Compounds, vol. 503, pp. 204-208, 2010.
[11]L. Wu, Z. Wang, X. Li, H. Guo, L. Li, X. Wang and J. Zheng, "Cation -substituted LiFePO4 prepared from the FeSO4•7H2O waste slag as apotential Li battery cathode material", Journal of Alloys and Compounds, vol. 497, pp. 278-284, 2010.
[12]Y. Ge, X. Yan, J. Liu, X. Zhang, J. Wang, X. He, R. Wang and H. Xie "An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance", Electrochimica Acta, vol. 55, pp. 5886-5890, 2010.
[13]Y. Lu, J. Shi, Z. Guo, Q. Tong, W. Huang, B. Li, "Synthesis of LiFe1−xNixPO4/C composites and their electrochemical performance", Journal of Power Sources, vol. 194, pp. 786-793, 2009.
[14]R. Yang, X. Song, M. Zhao, and F. Wang, "Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation", Journal of Alloys and Compounds, vol. 468, pp. 365-369,2009.
[15]“Battery Recall Update”, Adv. Batt. Tech., vol. 25, p. 4, 1989.
[16]M. Armand, D. W. Murphy, J. Broadhead, and B. C. H. Steele, "Materials for advanced batteries", Plenum press, New York, p.145, 1980.
[17]賴世榮,”智慧型鋰離子電池殘存電量估測之研究”,國立中山大學電機工程系碩士論文,p.29, 2004.
[18]J.B. Goodenough, "Basic Research Needs for Electrical Energy Storage", Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, pp.11, 2007.
[19]M. Winter, J.O. Besenhard, M.E. Spahr, and P. Novak, "Insertion electrode materials for rechargeable lithium batteries", Advanced Materials, vol. 10, pp. 725-763, 1998.
[20]W.D. Johnston, R.R. Heikes, and D. Sestrich, "The preparation, crystallography, and magnetic properties of the LixCo(1-x)O system ", Journal of Physcial Chemistry Solids, vol. 7, pp. 1-13, 1958.
[21]K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, "LixCoO2(0<x≦1): A new cathode material for batteries of high energy density", Materials research bulletin, vol. 15, pp. 783-789, 1980.
[22]L.D. Dyer, B.S. Borie , G.P. Smith, "Alkali metal-nickel oxides of the type MNiO2", Journal of the American chemical society, vol. 76, pp. 1499-1053, 1954.
[23]D.G. Wickham, and W.J. Croft, "Crystallographic and magnetic properties of several spinel containing trivalent JA-1044 manganese", Journal of Physical Chemistry Solids, vol. 7, pp. 351-360, 1958.
[24]J. C. Hunter, "Preparation of a new crystal from of manganese dioxide:λ-MnO2", Journal of Solid State Chemistry, vol. 39, pp. 142-147, 1981.
[25]姚慶意, ”鋰離子電池新技術簡介”, 工業材料, 131期,pp. 161-166,1997.
[26]S.Y. Chung, J.T. Bloking, and Y.M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes", Nature material, vol. 1, pp. 123-128, 2002.
[27]A.K. Padhi, K.S. Najundaswamy, and J.B. Goodenough, "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries", Journal of Electrochemical Society, vol. 144, pp. 1188-1194, 1997.
[28]A.K. Padhi, K.S. Najundaswamy, C. Masquelier, S. Okada , and J.B. Goodenough, "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates ", Journal of Electrochemical Society, vol. 144, pp. 1609-1613, 1997.
[29]M.S. Whittingham , "Lithium batteries and cathode materials", Chemical review, vol. 104, pp. 4271-4301, 2004.
[30]D. Moragn, A. Van der Ven, and C. Geder, " Li conductivity in LixMPO4 (M =Mn, Fe, Co, Ni) olivine materials ", Electrochemical and Solid-State Letters, vol. 7, pp. A30-A32,2004
[31]Y.N. Xu, S.Y. Chung, J.T. Bloking, Y.M. Chiang, and W.Y. Ching, "Electronic structure and electrical conductivity of undoped LiFePO4", Electrochemical and Solid-State Letters, vol. 7, pp. A131 -A134, 2004.
[32]V. Agarwal, and M. Liu, "Preparation of bariumcerate-based thin films using a modified Pechini process", Journal of material science, vol. 32, pp. 619-625, 1997.
[33]Wikiprdia, http://zh.wikipedia.org/w/index.pHp?title=EDTA.
[34]E. Wiberg and A. Holleman, Inorganic Chemistry: Academic Press, 2001.
[35]J. Ni, M. Morishita, Y. Kawabe, M. Watada,N. Takeichi, and T. Sakai, "Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid", Journal of Power Sources, vol. 195, pp. 2877-2882, 2010.
[36]J. Liu, R. Jiang, X. Wang, T. Huang, and A. Yu "The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values", Journal of Power Sources, vol. 194, pp. 536–540, 2009.
[37]H. Nakano, K. Dokko, S. Koizumi, H. Tannai, and K. Kanamura, "Hydrothermal synthesis of carbon-coated LiFePO4 and its application to lithium polymer battery", Journal of Electrochemical Society, vol. 155, pp. A909-A914, 2008.
[38]C.M. Burba, and R. Frech, "Raman and FTIR Spectroscopic study of LixFePO4(0≦x≦1)", Journal of Electrochemical Society, vol. 151, pp. A1032-A1038, 2004.
[39]M.R. Yang, and W.H. Ke, "The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M = Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells", Journal of Electrochemical Society, vol. 155, pp. A729-A732, 2008.
[40]C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, and J. Yan, "Improved high-rate charge/discharge performances of LiFePO4/C via V-doping", Journal of Power Sources, vol. 193, pp. 841-845, 2009.
[41]M.M. Doeff, Y. Hu, F. McLarnon, and R. Kostecki, "Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4", Electrochemical and Solid-State Letters, vol. 6, pp. A207-A209, 2003.
[42]Y. Hu, M.M. Doeff, R. Kostecki, and R. Finonesa, "Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries", Journal of Electrochemical Society, vol. 151, pp. A1279-1285, 2004.
[43]H. Zou, G. Zhang and P.K. Shen, " Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries", Materials research bulletin, vol. 45, pp. 149-152, 2010.
[44]H. Liu, H. Yang and J. Li, " A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries", Electrochimica Acta, vol. 55, pp. 1626-1629, 2010.
[45]D. Wang, H. Li, S. Shi, X. Huang and L. Chen, "Improving the rate performance of LiFePO4 by Fe-site doping", Electrochimica Acta, vol. 50, pp. 2955-2958, 2005.
[46]W. Zhang, Y. Hu, X. Tao, H. Huang, Y. Gan and C. Wang " Synthesis of spherical LiFePO4/C via Ni doping ", Journal of physics and Chemistry of Soild, vol. 71, pp. 1196-1200, 2010.
[47]R. Guo, Y. Cui, and X. Zhao, "Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process", Electrochimica Acta, vol. 55, pp. 922-926, 2010.





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top