跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳極湛
研究生(外文):Chi-Chan Wu
論文名稱:微波輔助合成銅銦硒/石墨烯奈米複合材料及其光生伏效能研究
論文名稱(外文):Microwave-assisted synthesis and photovoltaic performance of CuInSe2/graphene nanocomposites
指導教授:廖建勛
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:太陽能電池石墨烯銅銦硒奈米微粒微波溶熱法
外文關鍵詞:solar cellsgrapheneCuInSe2 nanoparticlesmicrowave-solvothermal method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用石墨烯當作銅銦硒奈米微粒的擔體並混合導電高分子P3HT製備混成太陽能電池。使用改良式Hummer法製備氧化石墨烯(GO),以Raman、 FT-IR及 XRD等分析方法進行結構鑑定與分析。銅銦硒奈米微粒是以微波輔助的溶熱法製備,反應時間可有效縮短為30分鐘。為增加氧化石墨烯於有機溶劑中的分散性,使用異氰酸苯酯表面改質GO後,以微波輔助的合成方式製備SPFG/CISe奈米複合材料。分別組裝P3HT/CISe、P3HT/SPFG 和 P3HT/SGCISe等不同混成材進行太陽能電池元件測試,P3HT/SPFG混合比例為1:0.1時有最佳結果,其開路電壓(Voc)、短路電流密度(Jsc)、填充因子(FF)和光電轉換效率(PCE)分別為1.05 V、1.3×10-2 mA/cm2、0.30和4×10-3 %。

In this thesis, we reported the preparation of hybrid of CISe nanoparticles decorated on the soluble graphene and their mixtures with conjugated polymer P3HT served as the active layer of hybrid solar cells. The graphene oxide nanosheets were prepared by modified Hummer’s method. The results of Raman spectra, FT-IR spectra and XRD diffraction indicated the successful preparation of GO. The CISe nanoparticles were prepared by microwave-assisted solvothermal methods which the reaction time was shorten to only 30 min. In order to improve the dispersion of GO in hydrophobic organic solvents, the SPFG was synthesis by GO treated with phenyl isocyanate. The SPFG/CISe nanocomposities (SGCISe) was prepared by microwave-assisted synthesis. The hybrid solar cells were fabricated with different mixture material such as P3HT/CISe, P3HT/SPFG and P3HT/SGCISe. As the P3HT/SPFG ratio is 1:0.1, he best performance of open circuit voltages (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE) obtained at optimized conditions are 1.05 V, 1.3×10-2 mA/cm2, 0.30, and 4×10-3 %, respectively.

中文摘要 I
Abstract II
Catalogs I
List of Figure V
List of Table XII
Chapter 1 Introduction 1
1-1 Foreword 1
1-2 Motivation and Objective 3
Chapter 2 Literature Review 4
2-1 Solar Cell 4
2-1-1 Introduction of Solar Cell 4
2-1-2 Bulk Hetero-junction Solar Cells 7
2-2-3 Donor and Acceptor Materials 9
2-2-4 The Basic Principal of Solar Cell 11
2-2-5 The Basic Parameters of Solar Cell 13
2-2 Conductive Polymer 17
2-2-1 Introduction of Conductive Polymer 17
2-3 Semiconductor Nanoparticles 19
2-3-1 Introduction of Semiconductor Nanoparticles 19
2-3-2 Preparation of CuInSe2 21
2-3-3 Solvothermal Method 23
2-3-4 Microwave-assisted Reaction 29
2-3-4 The Solar Cell Based on CuInSe2 Nanoparticles 33
2-4 Graphene 36
2-4-1 Introduction of Graphene 36
2-4-2 Preparation of Graphene 39
2-4-3 The Solar Cell Based on Graphene 41
2-4-3-1 The Active Layer 44
2-4-3-2 The Hole Transport Layer 50
Chapter 3 Research Map 53
Chapter 4 Experimental Section 54
4-1 Materials 54
4-2 Apparatus 56
4-3 Preparation of Graphene Oxide Nanosheet (GO) 58
4-4 Preparation of CuInSe2 nanoparticles by Microwave-assisted Polyol Methods (CISe) 59
4-5 Preparation of CuInSe2 nanoparticles by Microwave-assisted Solvothermal Methods (CISe) 60
4-6 Preparation of Solution-Processible Functionalized Graphene (SPFG) 61
4-7 Preparation of SPFG/CuInSe2 Nanocomposites by Microwave-assisted Solvothermal Methods (SGCISe) 62
4-8 Fabrication of Photovoltaic Devices 63
4-8-1 ITO Glasses Cleaning Process 63
4-8-2 Photovoltaic Devices Fabrication 63
Chapter 5 Results and Discussion 64
5-1 Characterization of Graphene Oxide (GO) 64
5-1-1 Identification of XRD 64
5-1-2 Identification of FT-IR 66
5-1-3 Raman Spectra 68
5-1-4 Thermogravimetric Analysis 70
5-1-5 TEM 72
5-2 Characterization of CuInSe2 Nanoparticles by Microwave-assisted Polyol Method (CISe) 74
5.2-1 Identification of XRD 74
5-3 Characterization of CuInSe2 Nanoparticles by Microwave-assisted Solvothermal Method (CISe) 76
5-3-1 Identification of XRD 76
5-3-2 UV-visible Spectrum 78
5-4 Characterization of Solution-Processible Functionalized Graphene (SPFG) 80
5-5-1 Identification of FT-IR 80
5-5-2 Identification of XRD 82
5-5-3 The Solubility Testing of SPFG 83
5-5-4 Thermogravimetric Analysis 84
5-6 Characterization of SPFG/CuInSe2 Nanocomposites(SGCISe) 86
5-6-1 Identification of XRD 86
5-6-2 TEM 87
5-6-3 Energy Dispersive X-ray Spectroscopy (EDS) 89
5-6-4 Identification of FT-IR 90
5-7 Photovoltaic Characterization 91
5-7-1 P3HT/CISe 92
5-7-2 P3HT/SPFG 96
5-7-3 P3HT/SGCISe 100
Chapter 6 Conclusions 104
References 106


[1]. Science Citation Index, polymer solar cell(s) (2007) Thompson Scientific, Web of Science.
[2]. C. R. McNeill, A. Abrusci, J. Zaumseil, R. Wilson, M. J. McKiernan, J. H. Burroughes, J. J. M. Halls, N. C. Greenham, R. H. Friend. Appl Phys Lett. 2007, Vol. 90, p. 193506.
[3]. B. Sun, N. C. Greenham. Phys Chem. 2007, Vol. 8, p. 3557.
[4]. E. Kymakis, E. Koudoumas, I. Franghiadakis, G. A. J. Amaratunga. J Phys D Appl Phys. 2006, Vol. 39, p. 1058.
[5]. M.A. Green, Switzerland, Trans Tech Publications ,1987.
[6]. K. A. Bertness, M. L. Ristow, H. C. Hamaker. New York : IEEE, 1988. 20th IEEE PhotoVoltaic Specialists Conference Record. p. 769.
[7]. Y. H. Yang, Y. T. Chen. J. Phys. Chem. B. 2006, Vol.110, p.17370.
[8]. S. Karg, W. Riess, V. Dyakonov, M. Schwoerer. Synth Met. 1993, Vol. 54, p. 427.
[9]. N. S. Sariciftci, L. Smilowitz,A. J. Heeger, F. Wudl. Science. 1992, Vol. 258, p. 1474.
[10]. K. M. Coakley, M. D. McGehee. Chem. Mater. 2004, Vol. 16, p. 4533.
[11]. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes. Appl. Phys. Lett. 1996, Vol. 68, p. 3120.
[12]. H. Hoppe, N. S. Sariciftci. Adv Polym Sci. 2008, Vol. 214, p. 1.
[13]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw. Nature. 1999, Vol. 401, p. 685.
[14]. 張玉函. 交通大學. 2009年.碩士論文
[15]. 2. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu. J. Am. Chem. Soc. 2008, Vol. 130, p. 5620.
[16]. 徐有欽. 中正大學. 2003年. 碩士論文
[17]. L. Zhang, J. Liang, S. Peng, Y. Shi, J. Chen. Mater. Chem. Phys. 2007, Vol. 106, p. 296.
[18]. C. Persson, A. Zunger. Phys. Rev. Lett. 2003, Vol. 91, p. 266401.
[19]. W. M. Du, X. F. Qian, J. Yin, Q. Gong. Chem. Eur. J. 2007, Vol. 13, p. 8840.
[20]. B. Li, Y. Xie, J. X. Huang, Y. T. Qian. Adv. Mater. 1999, Vol. 11, p. 1101.
[21]. B. Li, Y. Xie, J. X. Huang, Y. T. Qian. Adv. Mater. 1999, Vol. 11, p. 1456.
[22]. C. Yu, J. C. Yu, H. Wen , C. Zhang,. Mater. Lett. 2009, Vol. 63, p. 1984.
[23]. J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. Wandruszka, T. R. Fletcher, M. Williams, C. Wang, M. G. Norton. Nano Lett. 2006, Vol. 6, p. 1218.
[24]. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, A. F. Hepp. Chem. Mater. 2003, Vol. 15, p. 3142.
[25]. D. Pan, L. An, Z. Sun, W. Hou,Y. Yang, Z. Yang, Y. Lu. J. Am. Chem. Soc. 2008, Vol. 130, p. 5620.
[26]. H. Zhong, S. S. Lo, T. Mirkovic, Y. Li,Y. Ding, Y. Li, G. D. Scholes. ACS Nano. 2010, Vol. 4, p. 5259.
[27]. J. A. Thornton, T. C. Lommasson, H. Talien, B. H. Tseng. Solar Cells. 1988, Vol. 24, p. 1.
[28]. X. Gou, S. Peng, L. Zhang, Y. Shi, J. Chen, P. Shen. Chem. Lett. 2006, Vol. 35, p. 1050.
[29]. K. Nose, Y. Soma, T. Omata, S. O. Y. Matsuo. Chem. Mater. 2009, Vol. 21, p. 2607.
[30]. X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, P. Shen. J. Am. Chem. Soc. 2006, Vol. 128, p. 7222.
[31]. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang. J. Am. Chem. Soc. 2008, Vol. 130, p. 5620.
[32]. M. A. Malik, P. O''Brien, N. Revaprasadu. Adv. Mater. 1999, Vol. 11, p. 1441.
[33]. B. J. Hwang, T. H. Yu, M. Y. Cheng, R. J. Santhanam. Mater. Chem. 2009, p. 4536.
[34]. A. Gedanken, H. Grisaru, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss. Inorg. Chem.. 2003, Vol. 42, p. 7148.
[35]. C. Wu, C. Shiau, D. W. Ayele, W. Su, M. Cheng, C. Chiu, B. Hwang. Chem. Mater. 2010, Vol. 22, p. 4185.
[36]. W. Yue, S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Taoe, M. Wang. J. Mater. Chem. 2010, Vol. 20, p. 7570.
[37]. E. Arici, N. S. Sariciftci, D. Meissenr. Adv. Funct. Mater. 2003, Vol. 13, p. 165.
[38]. Y. Yu, W. Chien, C. Ciou , H. Wu. Thin Solid Films. 2010, Vol. xxx, p. xxx.
[39]. J. W. Hill, , R. H. Petrucci. General Chemistry. NJ., 2002.
[40]. J.Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway. Carbon. 2004, Vol. 42, p. 2867.
[41]. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Science. 2004, Vol. 306, p. 666.
[42]. H. W. Kroto, J. R. Heath , S.C. O''Brien, R. F. Curl, R. E. Smalley. Nature. 1985, Vol. 318, p. 162.
[43]. Iijima, S. Nature. 1991, Vol. 354, p. 56.
[44]. A. K. Geim, K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Science. 2004, Vol. 306, p. 666.
[45]. A. K. Geim, K. S. Novoselov. Nature Mater. 2007, Vol. 6, p. 183.
[46]. O. Palchik, R. Kerner, J. Zhu, A. Gedanken. J. Solid State Chem. 2000, Vol. 254, p. 530.
[47]. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley. Nature. 1985, Vol. 318, p. 162.
[48]. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Science. 2004, Vol. 306, p. 666.
[49]. L. M. Viculis, J. J. Mack, R. B. Kaner. Science. 2003, Vol. 299, p. 1361.
[50]. W. S. Hummers, R. E. Offeman. J. Am. Chem. Soc. 1958, Vol. 80, p. 1339.
[51]. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga. Nature. 2001, Vol. 414, p. 506.
[52]. G. Haviv, P. Oleg, G. Aharon. Inorg. Chem. 2003, Vol. 42, p. 7148.
[53]. Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, J. Wei. Adv. Funct. Mater. 2009, Vol. 19, p. 894.
[54]. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen. Adv. Mater. 2008, Vol. 20, p. 3924.
[55]. L. Valentini, M. Cardinali, S. B. Bon, D. Bagnis, R. Verdejo, M. A. Lopez-Manchadob, J. M. Kenny. J. Mater. Chem. 2010, Vol. 20, p. 995.
[56]. S. Li, K. Tu, C. Lin, C. Chen, M. Chhowalla. ACS Nano. 2010, Vol. 4, p. 3169.
[57]. D. Yu, Y. Yang, M. Durstock, J. Baek, L. Dai. ACS Nano. 5633 2010, Vol. 4.
[58]. X. Wang, L. Zhi, N. Tsao, Z. Tomovic, J. Li, K. Mullen. Angew. Chem. Int. Ed. 2008, Vol. 47, p. 2990.
[59]. X. Wang, L. Zhi, K. Mllen. Nano Lett. 2008, Vol. 8, p. 323.
[60]. W. Hong, Y. Xu, G. Lu, C.Li, G. Shi. Electrochemistry Communications. 2008, Vol. 10, p. 1555.
[61]. S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Carbon. 2006, Vol. 44, p. 3342.
[62]. J. Mao, Q. Liu, X. Lv, Z. F. Liu, Y. Huang, Y. F. Ma, S. G. Yin, Y. S. Chen,. J. Nanosci. Nanotechnol. 2007, Vol. 7, p. 2709.
[63]. E. Kymakis, I. Alexandrou, G. A. J. Amaratunga,. J. Appl. Phys. 2003, Vol. 93, p. 1764.
[64]. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker,. Nature. 1998, Vol. 391, p. 59.
[65]. P. Andersson, N. D. Robinson, M. Berggren. Synth. Met. 2005, Vol. 150, p. 217.
[66]. J. X. Geng and T. Y. Zeng. J. Am. Chem. Soc. 2006, Vol. 128, p. 16827.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top