(3.210.184.142) 您好!臺灣時間:2021/05/09 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳鍵誼
研究生(外文):Jian-Yi Chen
論文名稱:微波輔助合成奈米碳材擔持鉑、鉑釕觸媒及其電催化效能研究
論文名稱(外文):Microwave-assisted synthesis and electrocatalytic performance of nano carbon supporting Pt, PtRu catalyst
指導教授:廖建勛
指導教授(外文):Chien-Shiun Liao
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:88
中文關鍵詞:氧化石墨烯微波輔助合成鉑釕合金
外文關鍵詞:graphene oxidemicrowave – polyol synthesisPtRu alloy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用改良式的Hummers 法製備氧化石墨烯,以微波輔助法將鉑或鉑釕合金觸媒還原沉積於奈米碳材擔體上,探討觸媒的電催化學性質。本實驗分為三部分:第一部分為利用改良式的Hummers 法製備氧化石墨。第二部分利用多元醇微波輔助合成法將Pt或PtRu觸媒擔附於擔體上。第三部分將合成材料經由FTIR、TEM、XRD以及半電池之電化學測試進行分析。用不同比例之碳材做為擔體時,其最佳ESA為Pt/MWNT_EG(138.01 m2/g),因為MWNT上有較多的官能基,故可擔持較多且較均勻之觸媒。以If/Ib值比較,Pt/GO_EG有最大值為0.92, 這是因為GO仍保有–COOH 及 –OH官能基,使得CO可以再被氧化而成為CO2。在不同多元醇微波合成觸媒中,Pt/GO-MWNT_EG的ESA為最高126.52 m2/g,可能是因為EG具有較佳的立體障礙效應而造成。在PtRu/GO中,使用PG做為還原劑有最佳的ESA值(32.47 m2/g), 因為沉積粒子的粒徑較小且其分散性較佳。而最佳的If/Ib比值為使用TTEG為溶劑所合成之觸媒, 因為TEM影像顯示有最小粒徑,而有較多接觸面積可與甲醇反應。PtRu/GO-MWNT_EG有最佳ESA值104.6 m2/g, 推測是因為其立體障礙大而使得觸媒有較佳的分散性。 在PtRu/GO-MWNT_TTEG中之Ib值很低, 推測可能是金屬合金程度較高所導致。

Grapene oxide (GO) was made by modified Hummers method. The catalyst precursors were reduced and deposited on nano carbon supports by microwave-assisted synthesis. The electrocatalytic performances of catalysts were investigated in three-electrode electrochemical cells. Three parts of this study were performed as following. Part 1: GO was made by modified Hummers method. Part 2: using metal precursor, different carbon materials and different polyols were used to synthesize nanoparticle catalysts by microwave – polyol method. Part 3: catalysts were prepared and assembled into electrode for electrochemical measurements by cyclic voltammetry. The characteristics of Pt nanoparticles are studied using FTIR, TEM, XRD and electrochemical analysis.
In different ratios of GO/MWNT, Pt/MWNT_EG has the highest ESA value (138.01 m2/g) due to the most functional groups existed on surface of MWNTs. In comparison of If/Ib, the best CO-tolerance occurs for Pt/GO_EG with value of 0.92 due to that the remaining functional groups like –COOH and –OH groups on GO can convert CO into CO2. For the polyol effect on microwave-polyol method, the maximum electrochemical active surface area 126.52 m2/g for Pt/GO-MWNT_EG, due to the steric hindrance effect of EG. PtRu/GO_PG has a higher ESA (32.47 m2/g) due to its smaller particles and better dispersion. The If/Ib value of 1.19 observed for PtRu/GO_TTEG is attributed to its smallest particle size from TEM images. The ESA 104.6 m2/g for a PtRu/GO-MWNT_EG, is a result of better steric hindrance effect and better dispersion of catalysts. The very low Ib, occurs for PtRu/GO-MWNT_TTEG speculating an increase of PtRu alloy degree, which improves the CO-tolerance of catalyst.


摘要 I
Abstract II
誌謝 IV
Catalog V
List of Figure IX
List of Table XV
Chapter 1 Introduction 1
1-1 Foreword 1
1-2 Motivation and objective 3
Chapter 2 Literature review 4
2-1 Direct Methanol Fuel Cell (DMFC) 4
2-1-1 Introduction 4
2-1-2 Theory 5
2-2 Preparation of DMFC anode electrode material 7
2-2-1 Introduction 7
2-2-2 The development of improving DMFC anode catalysts 8
2-2-3 Preparation methods of catalyst 10
2-2-4 Microwave-Polyol method 13
2-3 Graphene 17
2-3-1 Introduction 17
2-3-2 Graphene structure 18
2-3-3 Synthesis method of graphene 20
2-3-4 Application of graphene 22
Chapter 3 23
3-1 Research structure 23
3-2 Research method 24
Chapter 4 25
4-1 Chemicals 25
4-2 Instruments 27
4-3 Experimental section 29
4-3-1 Preparation of graphene oxide (GO) 29
4-3-2 Pt catalysts support on GO-MWNT hybrid nanomaterials in ethylene glycol 30
4-3-3 Pt catalysts support on GO-MWNT hybrid nanomaterials in different polyols 31
4-3-4 PtRu catalysts support on GO in different polyols 32
PtRu catalysts support on carbon black in different polyols 33
4-3-5 PtRu catalysts support on GO-MWNT hybrid nanomaterials in different polyols 34
4-3-6 Experimental of electrochemical measurements 35
Chapter 5 Results and discussion 36
5-1 GO 36
5-1-1 Analysis: FTIR 36
5-1-2 Analysis : XRD 37
5-1-3 Analysis: TGA 38
5-1-4 Analysis: Raman 39
5-2 Pt catalysts deposited on GO-MWNT hybrid nanomaterials using ethylene glycol 40
5-2-1 Analysis: XRD 41
5-2-2 Analysis: TGA 44
5-2-3 Analysis: electrochemical properties 45
5-3 Pt catalysts deposited on GO-MWNT hybrid nanomaterials using different polyols 50
5-3-1 Analysis: XRD 50
5-3-2 Analysis: TGA 52
5-3-3 Analysis: electrochemical properties 53
5-4 PtRu catalysts deposited on GO using different polyol 56
5-4-1 Analysis: TEM 56
5-4-2 Analysis: XRD 60
5-4-3 Analysis: Raman 62
5-4-4 Analysis: TGA 63
5-4-5 Analysis: electrochemical properties 64
PtRu catalysts deposited on carbon black using different polyol 67
Analysis: TEM 67
Analysis: XRD 71
Analysis: TGA 73
Analysis: electrochemical properties 74
5-5 PtRu catalysts deposited on GO-MWNT hybrid nanomaterials using different polyols 77
5-5-1 Analysis: XRD 77
5-5-2 Analysis: TGA 79
5-5-3 Analysis: electrochemical properties 80
Chapter 6 Conclusions 83
Reference 85



1. M. Winter, R. J. Brodd. Chem. Rev. 2004, Vol. 104, p. 4245.
2. K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles. Chem. Engin. Science 2001, Vol. 56, p. 333.
3. S. Wasmus, W. Vielstich. J. Appl. Electrochem. 1993, Vol. 23, p. 120.
4. Y. Xing, L. Li. J. Phys. Chem. C. 2007, Vol. 111, p. 2803.
5. Y. Takasu, H. Itaya, T. Iwazaki, R. Miyoshi, T. Ohnuma, W. Sugimoto, Y. Murakami. Chem. Commun. 2001, p. 341.
6. B. Le Gratiet, H. Remita, G. Picq, M. O. Delcourt. J. Catal. 1996, Vol. 164, p. 36.
7. B. Yang, Y. Wang, L. Zhuang, J. Lu, and P. Liu, Q. Lu. Chem. Mater. 2003, Vol. 15, p. 3552.
8. U. A. Paulus, U. Endruschat, G. J. Feldmeyer, T. J. Schmidt, H. Bonnemann, R. J. Behm. J. Catal. 2000, Vol. 195, p. 383.
9. M. Tsuji, M. Hashimoto, Y. Nishzawa, M. Kubokawa, T. Tsuji. Chem. Eur. J. 2005, Vol. 11, p. 440.
10. R. Hoogenboom, U. S. Schubert. Macromol. Rapid Commun. 2007, Vol. 28, p. 368.
11. Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, Applications. H. M. Kingston, S. J. Haswell. Washington DC : American Chemical Society, 1997.
12. Z. Liu, J. Y. Lee, W. Chen, Ming Han, L. M. Gan. Langmuir 2004, Vol. 20, p. 181.
13. M. Tsuji, M. Kubokawa, R. Yano, N. Miyamae,T. Tsuji, M.S. Jun, S. Hong, S. Lim, S.H. Yoon,I. Mochida. Langmuir 2007, Vol. 23, p. 387.
14. X. Xue, C. Liu, W. Xing, T. Lu. J. Electrochem. Soc. 2006, Vol. 153, p. E79.
15. R. Chetty, S. Kundua , W. Xiaa , M. Brona, W. Schuhmann. Electrochim. Acta. 2009, Vol. 54, p. 4208.
16. T. S. Zhao, J. Prabhuram, Z. X. Liang, R. Chen. Electrochim. Acta. 2007, Vol. 52, p. 2649.
17. J. Lee, H. Kim, S. Bong, Y. R. Kim, I. Kim, S. Woo, S. Uhm. Electrochem. Commun. 2010, Vol. 12, p. 129.
18. Z. B. Wang, Y. Y. Chu, Z. Z. Jiang, D. M. Gu, G. P. Yin. Fuel Cells. 2010, Vol. 10, p. 914.
19. G. Lu, D. Genga, L. Chen. J. Mol. Catal. 2007, Vol. 265, p. 42.
20. L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, S. Hou. Carbon 2010, Vol. 48, p. 781.
21. W. T. Wong, Y. J. Gu. Langmuir 2006, Vol. 22, p. 11447.
22. H. W. Kroto, J. R. Heath , S.C. O''Brien, R. F. Curl, R. E. Smalley. Nature 1985, Vol. 318, p. 162.
23. S. Iijima. Nature 1991, Vol. 354, p. 56.
24. A. K. Geim, K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Science 2004, Vol. 306, p. 666.
25. M. I. Katsnelson. Mater. Today. 10, 2007, p. 20.
26. A. K. Geim, K. S. Novoselov. Nature Mater. 2007, Vol. 6, p. 183.
27. R. B. Kaner, L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn. J. Mater. Chem. 2005, Vol. 15, p. 974.
28. W. S. H. Jr., R. E. Offeman. J. Amer. Chem. Soc. 1958, Vol. 80, p. 1339.
29. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Nature 2006, Vol. 442, p. 282.
30. C. P. Wong, Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li. J. Phys. Chem. C. 2010, Vol. 114, p. 14819.
31. T. Liu, C. Zhang, L. Ren, X. Wang. J. Phys. Chem. C. 2010, Vol. 114, p. 11435.
32. A. C. Ferrari, J. Robertson. Phys. Rev. 2000, Vol. B61, p. 14095.
33. E. Frackowiak, G. Lota, T. Cacciaguerra, F. Beguin. Electrochem. Commun. 2006, Vol. 8, p. 129.
34. Y. Si, E. T. Samulski. Chem. Mater. 2008, Vol. 20, p. 6792.
35. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei. Adv. Mater. 2010, Vol. 22, p. 3723.
36. C. Wang, Y. Li, W. Gao, L. Ci, P. M. Ajayan. Carbon 2010, Vol. 48, p. 1124.
37. C. C. Chien, K. T. Jeng. Mater. Chem. Phys. 2006, Vol. 90, p. 80.
38. J. H. Park, Y. W. Ju, S. H. Park, H. R. Jung, K. S. Yang, W. J. Lee. J. Appl. Electrochem. 2009, Vol. 39, p. 1229.
39. P. Haldar, S. L. Knupp, W. Li, O. Paschos, T. M. Murray, J. Snyder. Carbon 2008, Vol. 46, p. 1276.
40. A. Manthiram, A. V. Murugan, T. Muraliganth. Chem. Mater. 2009, Vol. 21, p. 5004.
41. G. Sun, J. Guo, Q. Wang, G. Wang, Z. Zhou, S. Tang, L. Jiang, B. Zhou, Q. Xin. Carbon 2006, Vol. 44, p. 152.
42. D. V. Goia, T. K. Sau, M. Lopez. Chem. Mater. 2009, Vol. 21, p. 3649.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔