(3.238.96.184) 您好!臺灣時間:2021/05/13 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭旭益
研究生(外文):Syu-Yi Jheng
論文名稱:以氣旋式大氣氬氣電漿系統改質聚偏二氟乙烯微過濾薄膜之研究
論文名稱(外文):Surface Modification of Poly (vinylidene fluoride) Microfiltration Membrane by Cyclonic Atmospheric Pressure Ar Plasma Processing
指導教授:黃駿黃駿引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:133
中文關鍵詞:大氣電漿電漿表面改質聚偏二氟乙烯薄膜表面自由能共軛焦雷射掃描式顯微鏡
外文關鍵詞:atmospheric pressure plasmaplasma surface modificationpoly (vinylidene fluoride) membransurface free energyconfocal laser scanning microscopy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氣旋式大氣電漿系統對聚偏二氟乙烯(poly vinylidene fluoride, PVDF)薄膜進行表面改質。本研究可分為純氬氣電漿與氬氣電漿添加反應性氣體二部份,而反應性氣體包含O2、H2O與、H2O2與CH4。分別探討改變處理時間、電漿功率、氬氣流率、噴頭至基材距離與反應性氣體流率等操作參數,並測量水及二碘甲烷接觸角,再利用Owens-Wendt-Rabel-Kaelble(OWRK)法計算表面自由能。研究過程中,利用光放射線光譜儀檢測電漿物種變化情形,並藉由紅外線熱像儀測量電漿溫度與基材溫度之變化,以及使用高畫素數位相機拍攝改變不同參數下,電漿之輝光放電現象。改質後薄膜物理性質分析方面為使用掃描式電子顯微鏡與共軛焦雷射掃描式顯微鏡以觀測表面形貌與粗糙度,薄膜化學性質分析方面則為利用X光光電子能譜儀測量表面化學鍵結與元素比例之改變。研究結果顯示,經過電漿改質後之聚偏二氟乙烯薄膜,其表面性質由疏水性變為接近超親水性,且其親水性可保持達250小時。

The target of this study is to use cyclonic atmospheric pressure plasma to modify poly (vinylidene fluoride) (PVDF) membrane surface. It can be divided to two parts of this study. One is to use pure argon plasma, the other is to add reactive gas to enhance argon plasma. The reactive gas of this study is water, hydrogen peroxide, oxygen and methane. It examines the influence of plasma operating parameters including in treatment time, power, argon flow rate, distance from nozzle to substrate and reactive gas flow rate. The change of PVDF membrane surface was calculated by Owens-Wendt-Rabel-Kaelble (OWRK) method. During cyclonic atmospheric pressure plasma processing, the plasma species were analyzed by optical emission spectroscopy (OES). In addition, the temperature variations of plasma were determined by infrared thermal imager.
The physical property and chemical composition change of plasma treated PVDF membranes are also discussed. The surface morphology and roughness were observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The chemical composition and element ratio of cyclonic atmospheric pressure plasma treated PVDF membrane surface were analyzed using X-ray photoelectron spectroscopy (XPS). The aging test results of cyclonic atmospheric pressure plasma treated PVDF membrane can keep up 250 hours, indicating its duration. In summary, this study determines that the cyclonic atmospheric pressure plasma efficiently improves the hydrophilicity of PVDF membrane surface.

摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 聚偏二氟乙烯薄膜 2
1.3 研究目的 2
第二章 基礎理論與文獻回顧 4
2.1 電漿概述 4
2.1.1 電漿原理 4
2.1.2 電漿中勻相反應 8
2.2 大氣電漿介紹 10
2.2.1 大氣電漿原理 10
2.2.2 大氣電漿種類 12
2.3 電漿表面改質 15
2.3.1 電漿表面活化 15
2.3.2 電漿誘導接枝 15
2.3.3 電漿聚合 16
2.4 文獻回顧 16
第三章 實驗方法與儀器原理 21
3.1 實驗目的 21
3.2 實驗方法 23
3.2.1 實驗系統 23
3.2.2 實驗步驟 27
3.2.3 儀器原理 28
第四章 結果與討論 36
4.1 純氬氣電漿系統 36
4.1.1 改變電漿處理時間 36
4.1.2 改變電漿功率 46
4.1.3 改變氬氣流率 61
4.1.4 改變噴頭至基材距離 72
4.1.5 老化實驗 82
4.2 氬氣電漿添加反應性氣體系統 83
4.2.1 反應性氣體為氧氣 83
4.2.2 反應性氣體為水氣 88
4.2.3 反應性氣體為過氧化氫 93
4.2.4反應性氣體為甲烷 98
4.2.5 添加甲烷之氬氣電漿改質PVDF薄膜老化實驗 117
4.3 聚偏二氟乙烯微過濾薄膜應用 118
第五章 結論 122
參考文獻 123

1. B. N. Chapman, “Glow discharge processes,” John Wiley & Sons Inc, (1980).
2. J. L. Shohet, “Plasma-aided manufacturing,” IEEE Trans. Plasma Sci., 19, 725-733 (1991).
3. E. Njatawidjaja, M. Kodama, K. Matsuzaki, K. Yasuda, T. Matsuda, and M. Kogoma, “Hydrophilic modification of expanded polytetrafluoroethylene (ePTFE) by atmospheric pressure glow discharge (APG) treatment,” Surf. Coat. Technol., 201, 699-706 (2006).
4. M. Noeske, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion,” Int. J. Adhes. Adhes., 24, 171-177 (2004).
5. D. B. Graves, “Plasma processing,” IEEE Trans. Plasma Sci., 22, 31-42 (1994).
6. 陳秋萍,“聚乙烯共乙烯醇/聚偏二氟乙烯複合膜於滲透蒸發與蒸氣滲透之探討”,中原大學化學工程學系碩士論文,(2005)。
7. E. S. Kim, Y. J. Kim, Q. Yu, and B. Deng, “Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF),” J. Membr. Sci., 344, 71-81 (2009).
8. S. M. Pawde and K. Deshmukh, “Surface characterization of air plasma treated poly vinylidene fluoride and poly methyl methacrylate films,” Polym. Eng. Sci., 49, 808-818 (2009).
9. J. Wan, S. Wang, M. Song, X. Jia, and J. Yang, “Plasma-induced direct-grafting on polytetrafluoroethylene films by quasi-glow discharge at atmospheric pressure,” Plasma Process. Polym., 6, 825–830 (2009).
10. Y. W. Park and N. Inagaki, “Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas,” Polymer, 44, 1569-1575 (2003).
11. 張雅琪,“氣旋式大氣電漿對聚對苯二酸以二酯(PET)進行表面改質及光譜監測”,元智大學化學工程與材料科學學系碩士論文,(2010)。
12. 蔡景元,“以低壓電漿表面技術應用於醋酸纖維薄膜與聚丙烯薄膜表面研究”,元智大學化學工程與材料科學學系碩士論文,(2010)。
13. A. Grill, “Cold plasma materials fabrication,” IEEE Press, (1983).
14. 洪昭南、郭有斌,“電漿反應器與原理”,化工技術,9,156-179 (2001)。
15. C. Arango, M. Shapiro, and P. Brumer, “Cold atomic collisions: coherent control of penning and associative ionization,” Phys. Rev. Lett., 97, (2006).
16. 劉志宏、黃駿、許文通、蔡禎輝、張所鋐,“電漿進行材料表面微米級圖案化之加工技術”,機械工業雜誌,306,66-75 (2008)。
17. I. P. Raizer and Y. P. Raizer, “Gas discharge physics,” Springer Verlag, (1997).
18. R. Hicks, J. Jeong, S. Babayan, A. Schuetze, J. Park, H. Herrmann, I. Henins, and G. Selwyn, “Materials processing with atmospheric-pressure plasma jets,” IEEE Int. Conf. Plasma Sci., 178 (1998).
19. T. B. Reed, “Induction-coupled plasma torch,” J. Appl. Phys., 32, 821-824 (1961).
20. M. Hur and S. H. Hong, “Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes,” J. Phys. D: Appl. Phys., 35, 1946-1954 (2002).
21. B. M. Penetrante, M. C. Hsiao, B. T. Merritt, G. E. Vogtlin, P. H. Wallman, M. Neiger, O. Wolf, T. Hammer, and S. Broer, “Pulsed corona and dielectric-barrier discharge processing of NO in N2,” Appl. Phys. Lett., 68, 3719-3721 (1996).
22. M. Goldman, A. Goldman, and R. S. Sigmond, “Corona discharge, its properties and specific uses,” Pure Appl. Chem., 57, 1353-1362 (1985).
23. M. Goldman, “Corona discharges and their applications,” IEEE Proce. A, 128, 298-302 (1981).
24. M. Štefečka, M. Kando, M. Černák, D. Korzec, E. G. Finantu-Dinu, G. L. Dinu, and J. Engemann, “Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen-nitrogen gas mixtures,” Surf. Coat. Technol., 174-175, 553-558 (2003).
25. U. Kogelschatz, “Filamentary, patterned, and diffuse barrier discharges,” IEEE Trans. Plasma Sci., 30, 1400-1408 (2003).
26. A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, “The atmospheric-pressure plasma jet: A review and comparison to other plasma sources,” IEEE Trans. Plasma Sci., 26, 1685-1694 (1998).
27. S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, “Deposition of silicon dioxide films with an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol., 7, 286-288 (1998).
28. J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks, and G. S. Selwyn, “Etching materials with an atmospheric pressure plasma jet,” Plasma Sources Sci. Technol., 7, 282-285 (1998).
29. Z. Fang, H. Yang, and Y. Qiu, “Surface treatment of polyethylene terephthalate films using a microsecond pulse homogeneous dielectric barrier discharges in atmospheric air,” IEEE Trans. Plasma Sci., 38, 1615-1623 (2010).
30. M. D. Duca, C. L. Plosceanu, and T. Pop, “Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma,” Polym. Degradation Stab., 61, 65-72 (1998).
31. C. Wang and J. Chen, “Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation,” Appl. Surf. Sci., 253, 4599-4606 (2007).
32. Y. Chang, Y. Shih, R. Ruaan, A. Higuchi, W. Chen, and J. Lai, “Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility,” J. Membr. Sci., 309, 165-174 (2008).
33. M. L. Steen, A. C. Jordan, and E. R. Fisher, “Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment,”J. Membr. Sci., 204, 341-357 (2002).
34. N. Saxena, C. Prabhavathy, S. De, and S. DasGupta, “Flux enhancement by argon–oxygen plasma treatment of polyethersulfonemembranes,” Sep. Purif. Technol., 70, 160-165 (2009).
35. S. Kaur, Z. Ma, R. Gopal, G. Singh, S. Ramakrishna, and T. Matsuura, “Plasma-Induced Graft Copolymerization of Poly(methacrylic acid) on Electrospun Poly(vinylidene fluoride) Nanofiber Membrane, ” Langmuir, 23, 13085-13092 (2007).
36. C. S. Bournet, G. Ayotte, S. Turgeon, F. Massines, and G. Laroche, “Effects of Chemical Composition and the Addition of H2 in a N2 Atmospheric Pressure Dielectric Barrier Discharge on Polymer Surface Functionalization,” Langmuir, 25, 9432-9440 ( 2009)
37. Y. Chang, C. Y. Ko, Y. J. Shih, D. Quemener, A. Deratani, T. C. Wei, D. M. Wang, and J. Y. Lai, “Surface grafting control of PEGylated poly(vinylidene fluoride) antifoulingmembrane via surface-initiated radical graft copolymerization,” J. Membr. Sci., 345, 160–169 (2009).
38. Z. Gao, J. Sun, S. Peng, L. Yao, and Y. Qiu, “Surface Modification of Nylon 6 Films Treated with an He/O2 Atmospheric Pressure Plasma Jet,” J. Appl. Polym. Sci., 120, 2201–2206 (2011).
39. A. Sarani, A. Y. Nikiforov, N. D. Geyter, R. Morent, C. Leys, “Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture,” Appl. Surf. Sci., 257, 8737– 8741 (2011).
40. A. Lin, S. Shao, H. Li, D. Yang, Y. Kong, “Preparation and characterization of a new negatively charged polytetrafluoroethylene membrane for treating oilfield wastewater,” J. Membr. Sci., 371, 286–292 (2011).
41. M. Okubo, M. Tahara, N. Saeki, and T. Yamamoto, “Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization,” Thin Solid Films, 516, 6592–6597 (2008).
42. M. Pascu, D. Duraccio, S. Cimmino, and C. Vasile, “Modification of PVDF properties by dielectric barrier discharge treatment,” e-Polymers, 16, (2010).
43. J. H. Noh, H. K. Baik, I. Noh, J. C. Park, and I. S. Lee, “Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application,” Surf. Coat. Technol., 201, 5097–5101 (2007).
44. J. Wan, S. Wang, M. Song, X. Jia, and J. Yang, “Plasma-Induced Direct-Grafting on Polytetrafluoroethylene Films by Quasi-Glow Discharge at Atmospheric Pressure,” Plasma Process. Polym., 6, 825–830 (2009).
45. Y. Chang, Y. J. Shih, C. Y. Ko, J. F. Jhong, Y. L. Liu, and T. C. Wei, “Hemocompatibility of Poly(vinylidene fluoride) Membrane Grafted with Network-Like and Brush-Like Antifouling Layer Controlled via Plasma-Induced Surface PEGylation,” Langmuir, 27, 5445–5455 (2011).
46. http://www.keyence.com.tw/products/vision/microscope/vk9700/vk9700_features_9.php
47. http://en.wikipedia.org/wiki/Scanning_electron_microscope
48. http://mxp.physics.umn.edu/s04/Projects/s04xrf/theory.htm
49. http://www-o.ntust.edu.tw/~ch/ESCA2002/ESCA2008.html
50. B. O. Cho, S. Lao, L. Sha, and J. P. Chang, “Spectroscopic study of plasma using zirconium tetra-tert-butoxide for the plasma enhanced chemical vapor deposition of zirconium oxide,” J. Vac. Sci. Technol., A, 19, 2751-2761 (2001).
51. E. A. H. Timmermans, J. Jonkers, A. Rodero, M. C. Quintero, A. Sola, A. Gamero, D. C. Schram, and J. A. M. Van Der Mullen, “Behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 2: Plasmas at reduced pressure,” Spectrochim. Acta, Part B, 54, 1085-1098 (1999).
52. B. Kulakowska-Pawlak, W. Zyrnicki, K. Miernik, and J. Walkowicz, “Optical emission diagnostics of the linear magnetron sputtering discharge,” Surf. Coat. Technol., 116-119, 1076-1082 (1999).
53. B. Kuzflakowska-Pawlak and W. Zyrnicki, “Characterization of a d.c. titanium tetraisopropoxide/H2/N2 plasma using emission spectroscopy,” Thin Solid Films, 266, 8-13 (1995).
54. A. Bogaerts, A. Quentmeier, N. Jakubowski, and R. Gijbels, “Plasma diagnostics of an analytical grimm-type glow discharge in argon and in neon: langmuir probe and optical emission spectrometry measurements,” Spectrochim. Acta, Part B, 50, 1337-1349 (1995).
55. J. Cui and R. Fang, “Characterization of the diamond growth process using optical emission spectroscopy,” J. Appl. Phys., 81, 2856-2862 (1997).
56. M. Andrieux, J. M. Badie, M. Ducarroir, and L. Thomas, “Optical emission spectroscopy of RF and microwave plasmas used for chemical vapor deposition in the Si-C-H-Ar system,” Ann. Chim. Sci. Mat., 23, 743-752 (1998).
57. J. Luque, W. Juchmann, E. A. Brinkman, and J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” J. Vac. Sci. Technol. A, 16, 397-408 (1998).
58. T. P. Mollart and K. L. Lewis, “Optical-quality diamond growth from CO2-containing gas chemistries,” Dia. Rel. Mat., 8, 236-241 (1999).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔