跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉儀
研究生(外文):Chia-Yi Lin
論文名稱:石墨烯複合碳材合成及其電化學行為研究
論文名稱(外文):Synthesis and electrochemical behavior of graphene composites
指導教授:謝建德謝建德引用關係
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:121
中文關鍵詞:石墨烯奈米片氧化石墨烯二氧化錫四氧化三鐵電化學電容器鋰離子二次電池
外文關鍵詞:Graphene nanosheetsGraphene oxidesTin oxideIron oxideElectrochemical capacitorsLithium-ion batteries
相關次數:
  • 被引用被引用:0
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以製備石墨烯複合碳材之碳電極,並探討其電化學行為於電化學電容器與鋰離子二次電池。在第一部分,本研究利用循環伏安法、定電流充/放電循環測試以及電化學阻抗分析,探討以石墨烯材料為主的電化學電容器之電化學特性。利用Modified Hummers方法及微波還原法製備石墨烯奈米片。以石墨烯奈米片 (Graphene nanosheets, GNs) 與氧化石墨烯 (Graphene oxide, GO) 為碳電極,於1 M的硫酸電解液中實驗。與石墨烯電容器比較,其實驗結果顯示,氧化石墨烯電容器不只表現出穩定的電容量行為 (經1000次測試後,電容量約為61.5 F/g),而且具有較低之等效串聯電阻 (經1000次測試後,電阻值約為 7.6 Ω)。其因存在於氧化石墨烯邊緣及表面缺陷的氧官能基能有效地提升電雙層的親水性覆蓋率 (電雙層電容) 及提供氧化還原反應的活性位置 (偽電容)。結合結構 (奈米片) 及化學 (表面氧官能基) 兩因素,氧化石墨烯應用於電化學電容器是很有潛力的電極材料。
在第二部分,以石墨烯複合材料做為鋰離子二次電池之負極研究。本研究利用微波輔助法將SnO2奈米粒子沉積於石墨烯奈米片上,由實驗結果可得SnO2/GN複合電極於第一次0.1 C充/放電時,其可逆電容量高達640 mAh/g,且庫倫效率高達93.6 %。SnO2/GN複合電極的循環性能及快充能力皆優於GN電極。
本研究利用超音波沉澱法製備Fe3O4/GN複合電極,此製備流程包括:(i) modified Hummers方法、(ii) 超音波沉澱法及(iii) 熱處理三步驟,藉由此方法可製備均勻分佈的奈米顆粒於石墨烯奈米片上。與石墨烯電極相比,其實驗結果顯示,Fe3O4/GN複合電極於第一次0.1 C充/放電時,具有高可逆電容量達753 mAh/g、快充/放能力 (於5 C充/放時,電容量達533 mAh/g) 及循環性能佳。其因Fe3O4粒子的存在不僅可做為氧化還原的位置,還可抑制石墨烯奈米片的間距縮小,變成一具有三維結構之Fe3O4/GN複合材料,可有效地促進離子擴散、鋰離子儲存及電子傳輸。此一結果顯示,石墨烯複合材料做為鋰離子二次電池之負極材料具有優異的性能。


In this study, we investigate the electrochemical properties of graphene-based materials, and apply in the researches of electrochemical capacitors and lithium-ion batteries. In the frist part, we investigate the electrochemical properties of graphene-based capacitors using cyclic voltammetry (CV), constant charge/discharge cycling, and electrochemical impedance spectroscopy combined with an equivalent circuit. An easy route incorporated with modified Hummers’ method and microwave-assisted reduction is capable of preparing graphene nanosheets (GNs). Two types of capacitors fabricated with GN and graphene oxide (GO) powders are examined in 1 M H2SO4 within a potential of 0 and 0.8 V vs. Ag/AgCl. The GO-based capacitor not only presents a better stable capacitance (ca. 61.5 F/g after 1000 cycles), but also a lower equivalent series resistance (ca. 7.6 Ω after 1000 cycles), when compared with the GN-based capacitor. The presence of surface oxides, attached to the edges or defects of the basal planes, imparts hydrophilic coverage for the formation of a double layer (double-layer capacitance) and active sites for reversible redox reaction (pseudocapacitance). When incorporated with structural (nanosheets) and chemical (surface oxides) factors, the GO powder serves as a promising electrode material for electrochemical capacitors.
In the second part, we investigate graphene composites as anode materials for Lithium-ion batteries. An efficient microwave-assisted polyol (MP) approach has been developed to deposit well-dispersed SnO2 nanoparticles onto graphene nanosheets (GNs). The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles (3 nm in size) onto the GO sheets under the microwave irradiation. The obtained SnO2/GN hybrid anode possesses a reversible capacity of 640 mAh/g at 0.1 C and a high Coulombic efficiency of 93.6% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare GN anode.
We design an ultrasonic deposition approach to fabricate highly dispersed Fe3O4 over GNs, forming a hybrid powder. This approach for preparing Fe3O4/GN composite consists of (i) modified Hummers’ method, (ii) ultrasonic deposition and (iii) thermal reduction. The Fe3O4 nanocrystals with an average size of 10 nm can be homogeneously incorporated into the GNs to form Fe3O4/GN composites. In comparison with fresh GN anode, the composite anode exhibits high reversible capacity of 753 mAh/g at 0.1 C, high rate capability (533 mAh/g at 5 C), and enhanced cyclic performance with high coulombic efficiency. This improvement can be attributed to the fact that since Fe3O4 acts not only as a redox site but also as a spacer, the Fe3O4/GN hybrid creates a three-dimensional architecture that effectively facilitates ionic diffusion, Li storage, and electronic transport. This result opens an efficient route for synthesis and application of GN hybrid as anode material for Li-ion batteries with superior performance.


致謝 I
ABSTRACT II
摘要 IV
TABLE OF CONTECTS VI
LIST OF FIGHRES IX
LIST OF TABLES XIV
CHAPTER 1. INTRODUCTION 1
1.1 Preface 1
1.2 Scope and objective 2
CHAPTER 2. LITERATURE REVIEW 4
2.1 Introduction of graphene 4
2.2 Synthesis of graphene 6
2.2.1 Mechanical exfoliation 6
2.2.2 Supported growth 7
2.2.3 Wet chemical routes 10
2.3 Properties of graphene 12
2.3.1 Electronics 12
2.3.2 Optics 14
2.3.3 Mechanics 16
2.4 Applications of graphene 17
2.4.1 Electrochemical capacitor 17
2.4.2 Lithium-ion battery 20
2.4.3 Solar cell 21
2.4.4 Fuel cell 23
CHAPTER 3. MATERIAL AND METHODS 28
3.1 Materials 28
3.2 Instruments 29
3.3 Experimental 30
3.3.1 Synthesis of graphene oxide sheets 30
3.3.2 Synthesis of graphene nanosheets 32
3.3.3 Synthesis of SnO2/GN composites 32
3.3.4 Synthesis of Fe3O4/GN composites 34
3.4 Electrode preparation 35
3.5 Electrochemical measurements 38
3.5.1 Cyclic voltammetry 38
3.5.2 Galvanostatic measurement 38
3.5.3 Electrochemical impedance spectroscopy 39
3.5.4 Charge and discharge test 39
3.6 Characterization methods 40
3.6.1 X-ray diffraction 40
3.6.2 Raman spectroscopy 40
3.6.3 Micromeritics surface area and porosity analyzer 40
3.6.4 Thermo-gravimetric analyzer 41
3.6.5 Fourier transformed infrared spectroscopy 41
3.6.6 X-ray photoelectron spectroscopy 41
3.6.7 Field-emission scanning electron microscopy 41
3.6.8 High-resolution transmission electron microscopy 42
CHAPTER 4. ELECTROCHEMICAL CAPACITORS FABRICATED WITH GRAPHENE-BASED ELECTRODES 43
4.1 Introduction 43
4.2 Experimental 44
4.3 Results and discussion 46
4.3.1 Physical properties 46
4.3.2 Electrochemical properties 57
4.4 Summary 68
CHAPTER 5. MICROWAVE-ASSISTED TIN OXIDE NANAPARTICLES ON GRAPHENE SHEETS AS ANODE MATERIALS FOR LITHIUM-ION BATTERIES 69
5.1 Introduction 69
5.2 Experimental 71
5.3 Results and discussion 72
5.3.1 Physical properties of GN and SnO2/GN 72
5.3.2 Charge and discharge test 77
5.4 Summary 84
CHAPTER 6. IMPROVED STORAGE CAPACITY AND RATE CAPABILITY OF Fe3O4/GRAPHENE ANODES FOR LITHIUM-ION BATTERIES 85
6.1 Introduction 85
6.2 Experimental 89
6.3 Results and Discussion 90
6.3.1 Physical properties of GN and Fe3O4/GN 90
6.3.2 Charge and discharge test 96
6.4 Summary 104
CHAPTER 7. CONCLUSIONS 105
REFERENCES 107
LIST OF PUBLICATION 118
JOURNAL PAPER: 118
CONFERENCE PAPER: 120


[1]H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 11 (2009) 1158.
[2]Y. Zhang, H. Li, L. Pan, T. Lu, Z. Sun, J. Electroanal. Chem. 634 (2009) 68.
[3]L. Qu, Y.J.-B. Baek, L. Dai, ACS Nano 4 (2010) 1321.
[4]K. Zhang, L.L. Zhang, X.S. Zhao, J.Wu, Chem. Mater. 22 (2010) 1392.
[5]S.-M. Paek, E. Yoo, I. Honma, Nano Lett. 9 (2009) 72.
[6]L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Carbon 48 (2010) 781.
[7]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666.
[8]A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183.
[9]D. Chen, L. Tang, J. Li, Chem. Soc. Rev. 39 (2010) 3157.
[10]M. Pumera, Chem. Rec. 9 (2009) 211.
[11]D.A.C. Brownson, C.E. Banks, Analyst 135 (2010) 2768.
[12]M. Liang, L. Zhi, J. Mater. Chem. 19 (2009) 5871.
[13]A.L. Lavoisier, Traite elementaire de chimie. Paris; 1789.
[14]S. Iijima, Nature 354 (1991) 56.
[15]H.W, Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162.
[16]C. Soldano, A. Mahmood, E. Dujardin, Carbon 48 (2010) 2127.
[17]C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 6 (2008)183.
[18]Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201.
[19]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438 (2005) 197.
[20]X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8 (2008) 323.
[21]S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282.
[22]M.D. Stroller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498.
[23]K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nat. Acad. Sci. USA 102 (2005) 10451.
[24]P. Blake, E.W. Hill, A.H.C. Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Appl. Phys. Lett. 91 (2007) 063124.
[25]L. Gao, W. Ren, F. Li, H.-M.Cheng, ACS Nano 8 (2008) 1625.
[26]I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Nano Lett. 7 (2007) 3569.
[27]T.K.W. Fujita, C. Oshima, Surf. Interface Anal. 37 (2005) 120.
[28]T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, Surf. Sci. 264 (1992) 261.
[29]M. Enachescu, D. Schleef, D.F. Ogletree, M. Salmeron, Phys. Rev. B 60 (1999) 16913.
[30]O. Ryoko, H. Masaki, O. Masahiko, X. Miho, O. Chuhei, O. Shigeki, Tanso. 195 (2000) 400.
[31]T.I.A. Tanaka, K. Yamashita, E. Rokuta, C. Oshima, Surf. Rev. Lett. 10 (2003) 697.
[32]L. Papagno, L.S. Caputi, Phys. Rev. B 29 (1984) 1483.
[33]P.W. Sutter, J.-I. Flege, E.A. Sutter, Nat. Mater. 7 (2008) 406.
[34]J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Nano Letters 8 (2008) 565.
[35]J. Vaari, J. Lahtinen, P. Hautojarvi, Catal. Lett. 44 (1997) 43.
[36]A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R. Pinchaux, I. Forbeaux, J.M. Debever, M. Sauvage-Simkin, J.M. Themlin, J. Appl. Phys. 92 (2002) 2479.
[37]M. Terai, N. Hasegawa, M. Okusawa, S. Otani, C. Oshima, Appl. Surf.Sci. 130 (1997) 876.
[38]A. Nagashima, H. Itoh, T. Ichinokawa, C. Oshima, S. Otani, Phys. Rev. B 50 (1994) 4756.
[39]I. Forbeaux, J.M. Themlin, J.M. Debever, Surf. Sci. 442 (1999) 9.
[40]I. Forbeaux, J.M. Themlin, J.M. Debever, Phys. Rev. B 58 (1998) 16396.
[41]C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z. T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W. A. de Heer, J. Phys. Chem. B 108 (2004) 19912.
[42]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 3012 (2006) 1191.
[43]T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima, Phys. Rev. B 42 (1990) 11469.
[44]B.S. Itchkawitz, P.F. Lyman, G.W. Ownby, D.M. Zehner, Surf. Sci. 318 (1994) 395.
[45]A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9 (2009) 30.
[46]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J. Choi, B.H. Hong, Nature 457 (2009) 706.
[47]S. Park, R.S. Ruoff, Nat. Nanotechnol. 4 (2009) 217.
[48]B.C. Brodie, Philos. Trans. Roy. Soc. London 149 (1859) 249.
[49]L. Staudenmaier, Berichte der Deutschen Chemischen Gesellschaft 31 (1898) 1481.
[50]L. Babiano, Ann. Chim. Appl. 4 (1915) 231.
[51]W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.
[52]H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud''homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys Chem B 110 (2006) 8535.
[53]M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 51 (2002) 1.
[54]S. Duquesne, M. Le Bras, S. Bourbigot, R. Delobel, H. Vezin, G. Camino, B. Eling, C. Lindsay, T. Roels, Fire. Mater. 27 (2003) 103.
[55]F. Kang, T.Y. Zhang, Y. Leng, Carbon 35 (1997) 1167.
[56]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3 (2008) 101.
[57]Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438 (2005) 201.
[58]V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95 (2005) 146801.
[59]N.M.R. Peres, F. Guinea, A.H.C. Neto, Phys. Rev. B 73 (2006) 125411.
[60]D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, P.N. First, J.A. Stroscio, Science 324 (2009) 924.
[61]A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81 (2009) 109.
[62]V.M. Apalkov, T. Chakraborty, Phys. Rev. Lett. 97 (2006) 126801.
[63]C. Toke, J.K. Jain, Phys. Rev. B 75 (2007) 245440.
[64]X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei, Nature 462 (2009) 192.
[65]K.I. Bolotin, F. Ghahari, M.D. Shulman, H.L. Stormer, P. Kim, Nature 462 (2009) 196.
[66]R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320 (2008) 1308.
[67]Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Nano Lett. 7 (2007) 2758.
[68]K.F. Mak, M.Y. Sfeir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz, Phys. Rev. Lett. 101 (2008) 196405.
[69]F. Wang, Y.B. Zhang, C.S. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Science 320 (2008) 206.
[70]P.A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Nano Lett. 8 (2008) 4248.
[71]F. Rana, P.A. George, J.H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, M.G. Spencer, Phys. Rev. B 79 (2009) 115447.
[72]F. Xia, T. Mueller, Y.M. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 4 (2009) 839.
[73]C. Lee, X. Wei, Science 321 (2008) 385.
[74]J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315 (2007) 490.
[75]D. Garcia-Sanchez, A.M. van der Zande, A.S. Paulo, B. Lassagne, P.L. McEuen, A. Bachtold, Nano Lett. 8 (2008) 1399.
[76]R. Kotz, M. Carlen, Electrochim. Acta 45 (2000) 2483.
[77]S.D. Meryl, P. Sungjin, Z. Yanwu, A. Jinho, R.S. Rodney, Nano Lett. 8 (2008) 3498.
[78]P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845.
[79]J.R. Miller, P. Simon, Science 321 (2008) 651.
[80]A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157 (2006) 11.
[81]L. Diederich, E. Barborini, P. Piseri, A. Podesta, P. Milani, Appl. Phys. Lett. 75 (1999) 2662.
[82]D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 5 (2006) 987.
[83]S. Lipka, IEEE Aerosp. Electron. Syst. Mag. 12 (1997) 27.
[84]G. Lota, T.A. Centeno, E. Frackowiak, F. Stoeckli, Electrochim. Acta 53 (2008) 2210.
[85]S. Talapatra, S. Kar, S.K. Pal, R. Vajtai, L. Ci, P. Victor, M.M. Shaijumon, S. Kaur, O. Nalamasu, P.M. Ajayan, Nat. Nanotechnol. 1 (2006) 112.
[86]K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, AdV. Funct. Mater. 11 (2001) 387.
[87]D.Y. Qu, J. Power Sources 109 (2002) 403.
[88]M.M. Shaijumon, F.S. Ou, L. Ci, P.M. Ajayan, Chem. Commun. 30 (2008) 2373.
[89]M, Toupin, T, Brousse, D. Bbelanger, Chem. Mater. 16 (2004) 3184.
[90]W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Angew. Chem., Int. Ed. 42 (2003) 4092.
[91]J. Miller, B. Dunn, T. Tran, R. Pekala, J. Electrochem. Soc. 144 (1997) L309.
[92]A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, J. Power Sources 47 (1994) 89.
[93]S. Yongchao, T.S. Edward, Chem. Mater. 20 (2008) 6792.
[94]R. Liu, S.I. Cho, S.B. Lee, Nanotechnology 19 (2008) 215710.
[95]S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci. 120 (2008) 9.
[96]Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, J. Phys. Chem. C 113 (2009) 13103.
[97]B.J. Lee, S.R. Sivakkumar, J.M. Ko, J.H. Kim, S.M. Jo, D.Y. Kim, J. Power Sources 168 (2007) 546.
[98]Y. Shan, L. Gao, Mater. Chem. Phys. 103 (2007) 206.
[99]G. Arabale, D. Wagh, M. Kulkarni, I.S. Mulla, S.P. Vernekar, K. Vijayamohanan, A.M. Rao, Chem. Phys. Lett. 376 (2003) 207.
[100]Y.Z. Zheng, M.L. Zhang, P. Gao, Mater. Res. Bull. 42 (2007) 1740.
[101]T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.H. Han, J. Power Sources 161 (2006) 1479.
[102]D. Kalpana, K.S. Omkumar, S.S. Kumar, N.G. Renganathan, Electrochim. Acta 52 (2006) 1309.
[103]J.M. Tarascon, M. Armand, Nature 414 (2001) 359.
[104]N.A. Kaskhedikar, J. Maier, Adv. Mater. 21 (2009) 2664.
[105] D.R. Rolison, R.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubers, Chem. Soc. Rev. 38 (2009) 226.
[106]F. Cheng, Z. Tao, J. Liang, J. Chen, Chem. Mater. 20 (2008) 667.
[107]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276 (1997) 1395.
[108]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407 (2000) 496.
[109]H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 15 (2003) 2107.
[110]P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5 (2006) 567.
[111]C.K. Chan, H. Peng, G. Liu, K.M. Wrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3 (2008) 31.
[112]E.J. Yoo, J.D. Kim, E.J. Hosono, H.S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277.
[113]M. Liang, B. Luo, L. Zhi, Int. J. Energy Res. 33 (2009) 1161.
[114]H. Chang, Y. Liu, H. Zhang, J. Li, J. Electroanal. Chem. (2010), doi:10.1016/J.JELECHEM.2010.1010.1015.
[115]S. De, J.N. Coleman, ACS Nano 4 (2010) 2713.
[116]L. Valentini,M. Cardinali, S.B. Bon, D. Bagnis, R. Verdejo,M.A. Lopez-Manchado, J.M. Kenny, J. Mater. Chem. 20 (2010) 995.
[117]R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, J. Mater. Chem. 20 (2010) 7114.
[118]S. Zhang, Y. Shao, X. Li, Z. Nie, Y.Wang, J. Liu, G. Yin, Y. Lin, J. Power Sources 195 (2010) 457.
[119]B. Seger, P.V. Kamat, J. Phys. Chem. C 113 (2009) 7990.
[120]Y. Xin, J.-G. Liu, Y. Zhou, W. Liu, J. Gao, Y. Xie, Y. Yin, Z. Zou, J. Power Sources (2010), doi:10.1016/J.JPOWSOUR.2010.1008.1051.
[121]Y.M. Li, L.H. Tang, J.H. Li, Chem. Commun. 11 (2009) 846.
[122]S. Bong, Y.-R. Kim, I. Kim, S.Woo, S. Uhm, J. Lee, H. Kim, Electrochem. Commun. 12 (2010) 129.
[123] N. Shang, P. Papakonstantinou, P.Wang, S.R.P. Silva, J. Phys. Chem. C 114 (2010) 15837.
[124]M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8 (2008) 3498.
[125]B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic/Plenum Publishers, New York (1999).
[126]Y.T. Wu, C.C. Hu, J. Electrochem. Soc. 151 (2004) A2060.
[127]C.T. Hsieh, Y.T. Lin, Microporous Mesoporous Mater. 93 (2006) 232.
[128]Y.R. Nian, H. Teng, J. Electroanal. Chem. 540 (2003) 119.
[129]C.T. Hsieh, W.Y. Chen, Y.S. Cheng, Electrochim. Acta 55 (2010) 5294.
[130] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3 (2007) 101.
[131]C. Wang, D. Li, C.O. Too, G.G. Wallace, Chem. Mater. 21 (2009) 2604.
[132]J.I. Paredes, S. Villar-Rodi, A. Martinez-Alonso, J.M.D. Tascon, Langmuir 24 (2008) 10560.
[133]C. Xu, X. Wang, J. Zhu, J. Phys. Chem. C 112 (2008) 19841.
[134]G. Wang, X. Shen, J. Yao, J. Park, Carbon 47 (2009) 2049.
[135]S.M. Paek, E. Yoo, I. Honma, Nano Lett. 9 (2009) 72.
[136]R. Muszynski, B. Seger, P.V. Kamat, J. Phys. Chem. C 112 (2008) 5263.
[137]S. Biswas, L.T. Drzal, Nano Lett. 9 (2009) 167.
[138]C.T. Hsieh, W.M. Hung, W.Y. Chen, Int. J. Hydrogen Energy 35 (2010) 8425.
[139] Q.M. Gong, Z. Li, Y. Wang, B. Wu, Z. Zhang, J. Liang, Mater. Res. Bull. 42 (2007) 474.
[140]S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Langmuir 25 (2009) 11078.
[141]Y.T. Lee, N.S. Kim, J. Park, J.B. Han, Y.S. Choi, H. Ryu, H.J. Lee, Chem. Phys. Lett. 372 (2003) 853.
[142]K.E. Kim, K.J. Kim, W.S. Jung, S.Y. Bae, J. Park, J. Choi, J. Choo, Chem. Phys. Lett. 401 (2005) 459.
[143]L. Ni, K. Kuroda, L.P. Zhou, T. Kizuka, K. Ohta, K. Matsuishi, J. Nakamura, Carbon 44 (2006) 2265.
[144]X. Wen, C.W. Garland, T. Hwa, M. Kardar, E. Kokufuta, Y. Li, M. Orkisz, T. Tanaka, Nature 355 (1992) 426.
[145]J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446 (2007) 60.
[146]D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448 (2007) 457.
[147]K. Kinoshita, Carbon: Electrochemical and physicochemical properties, John Wiley & Sons, New York (1987).
[148]C.T. Hsieh, W.Y. Chen, J.H. Lin, Microporous Mesoporous Mater. 122 (2009) 155.
[149]C.T. Hsieh, H. Teng, Carbon 40 (2002) 667.
[150]J.N. Nian, H. Teng, J. Phys. Chem. B 109 (2005) 10279.
[151]R. Kotz, M. Carlen, Electrochim. Acta 45 (2000) 2483.
[152]C.T. Hsieh, J.Y. Lin, Y.W. Chou, Chem. Phys. Lett. 444 (2007) 149.
[153]P. Guo, H. Song, X. Chen, Electrochem.Commun. 11 (2009) 1320.
[154]P. Lian, X. Zhu, H. Xiang, Z. Li, W. Yang, H. Wang, Electrochim.Acta. 56 (2010) 834.
[155]H. Kim, D.H. Seo, S.W. Kim, J. Kim, K. Kang, Carbon 49 (2011) 326.
[156]X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, Carbon 49 (2011) 133.
[157]H.Y. Kim, S.W. Kim, Y.U. Park, H.O. Gwon, D.H. Seo, Y.H. Kim, K.S. Kang, Nano Res. 3 (2010) 813.
[158]E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Nano Lett. 8 (2008) 2277.
[159]J. Yao, X. Shen, B. Wang, H. Liu, G. Wang, Electrochem. Commun. 11 (2009) 1849.
[160]Z.Y. Wang, H. Ahang, N. Li, Z. Shi, Z.N. Gu, G.P. Cao, Nano Res. 3 (2010) 748.
[161]Z.F. Du, X.M. Yin, M. Zhang, Q.Y. Hao, Y.G. Wang, T.H. Wang, Mater. Lett. 64 (2010) 2076.
[162]M. Zhang, D. Lei, Z.F. Du, X.M. Yin, L.B. Chen,.Q.H. Li, Y.G. Wang, T.H. Wang, J. Mater. Chem. 21 (2011) 1673.
[163]D.M. Han, Z.P. Guo, R. Zeng, C.J. Kim, Y.Z. Meng, H.K. Liu, Int. J. Hydrogen Energy 34 (2009) 2426.
[164]W. Chen, J. Zhao, J.Y. Lee, Z. Liu, Mater. Chem. Phys. 91 (2005) 124.
[165]Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, J. Phys. Chem. B 108 (2004) 8234.
[166]C.T. Hsieh, W.M. Hung, W.Y. Chen, J.Y. Lin, Int. J. Hydrogen Energy 36 (2011) 2765.
[167]S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4 (2010) 2822.
[168]G. Yang, G. Wang, W. Hou, J. Phys Chem. B 109 (2005) 11186.
[169]Y. Si, E.T. Samulski, Chem. Mater. 20 (2008) 6792.
[170]C. Xu, X. Wang, L. Yang, Y. J. Wu, Solid State Chem. 182 (2009) 2486.
[171]J.Z. Wang, C. Zhong, S.L. Chou, H.K. Liu, Electrochem. Commun. 12 (2010) 1467.
[172]H. Xiang, K. Zhang, G. Ji, J.Y. Lee, C. Zou, X. Chen, J. Wu, Carbon 49 (2011) 1787.
[173] G.M. Zhou, D.W. Wang, F. Li, L.L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Chem. Mater. 22 (2010) 5306.
[174] M. Zhang, D. Lei, X.M. Yin, L.B. Chen, Q.H. Li, Y.G. Wang, T.H. Wang, J. Mater. Chem. 20 (2010) 5538.
[175]Z.M. Cui, L.Y. Jiang, W.G. Song, Y.G. Guo, Chem. Mater. 21 (2009) 1162.
[176]L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5 (2006) 567.
[177]T. Moon, C. Kim, S.T. Hwang, B. Park, Electrochem. Solid State Lett. 9 (2006) A408.
[178]J.Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z.X. Wang, L.Q. Chen, H.K. Liu, Chem. Eur. J. 17 (2011) 661.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top