(3.238.130.97) 您好!臺灣時間:2021/05/18 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:書正
研究生(外文):Sujan Chowdhury
論文名稱:氧化鈰奈米材料之合成及鑑定
論文名稱(外文):Characterization and Formation Pathways in Preparation of Ceria Nanomaterials
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:244
中文關鍵詞:Ceria一維(1-D) ceria三維(三維) ceria等級制度的ceria金屬有機框架有機金屬化合物形成路EXAFS/XANES甲醇分解。
外文關鍵詞:CeriaOne-dimensional (1-D) ceriaThree dimensional (3-D) ceriaHierarchical ceriaMetal organic frameworksOrganometallicsFormation pathwaysEXAFS/XANESMethanol decomposition.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈰二氧化物或者ceria,化工同富有的氧氣空位和在Ce3+和Ce4+之間的更高的氧化還原的能力联系在一起,因此被促進作為氧氣存貯材料高容量。 形態學包括有大小、維度和結構欣然被影響催化作用。 在那看待這工作的主要宗旨是瞭解ceria材料的結構行為甲醇分解的进一步调查的未來燃料电池應用的。 另外尺寸ceria材料的描述特性是這份論文的一個中央部分,為了學會更多關於不同的尺寸ceria材料綜合的機制导致未來應用。 因而我們總結綜合和描述特性一個或三維(1-D/3-D) ceria nanostructure。 這允許我們學習催化作用和形成機制比較在1-D/3-D nanomaterial的ceria上的。 這樣像鉻沾染废水处理的Ceria為重金屬應用不利地也是感動的。 吸附的機制认為是在ceria nanorod表面和哥斯達黎加(VI)陰離子之間的親合力由離子交換。 另外,我們開发三維(三維) ceria nanostructures瞭解形態學nanomaterial和試驗過解釋可能的反應機制。 X光衍射(XRD)和掃描电子显微镜术(SEM)的組合被用于學習水晶綜合,包括水晶的形態演變。 催化劑微细结构也被辨認了並且被描繪了使用領域放射掃描电子显微镜术(FE-SEM), X光衍射(XRD),賭注氮氣等溫線、喇曼分光學、熱重力分析或者差额热分析(TGA/DTA), X-射線光電子分光學(XPS),在邊緣結構(XANES)附近的X-射線吸收或被扩大的X-射線吸收微细结构(EXAFS)分光學。 在通過使用強有力的同步辐射的地方(即EXAFS, XANES),當前工作提供进行的研究工作最近進展被淹沒的概要辨認1-D ceria nanorods和三維ceria結構。 EXAFS或XANES分光學廣泛证明非常有效的在確定另外尺寸ceria結構電子和幾何結構。 重要地為潛在的甲醇互作用應用,它也表示,吸附容量和ceria材料的氧化态显著執行分解甲醇和調查與傅立葉變換紅外分光學(FTIR)分析。

This Research was done at the Yuan Ze University (YZU), Taiwan during my four (4) years stay for the Ph.D. level Program in Chemical Engineering and Materials Science. I would like to thank Prof. Kuen-Song Lin for accepting me to work on one of the projects in his environmental and nanocatalyst group related in YZU. At this point I would like to express my gratitude to my colleagues and Professors at the Department of Chemical Engineering and Materials Science. I owe special thanks to my Ph.D. thesis supervisor Prof. Kuen-Song Lin in YZU, Taiwan and my former undergraduate Prof. Maksudur Rahman Khan (M.R. Khan) from Bangladesh. Prof. M.R. Khan inspires and recommends me to come to YZU, Taiwan for accomplish of my Master’s degree in Chemical Engineering and Material Science department in YZU and continue my Ph.D. program in same university.
Looking back into the past, Prof. Shawn D. Lin led me into catalytic investigation for Fuel Cell during my Master study in YZU. His devotion into the catalytic development for Fuel cell contributed to my interests in different types of catalyst synthesis and application field. Through him, I learned how to start a research project which made my PhD research easier. My stay in Taiwan has been pleasant because of the support and friendship from several friends. I would have never imagined that upon my arrival at the airport at evening, I would have Prof. M.R. Khan, Chung-Hsuan Huang (黃鐘玄) and Fu wan thing (傅婉婷) picking me up with my heavy luggage and helping me settle down at the beginning. Professor Khan also helped me get started in the university. Staying in YZU I would like to thank my Ph.D. supervisor (K.S. Lin), who helped me cordially to do my research work and always he take care of me as one of his family member. I would like to thank him for being patient and supportive to stay in YZU, Taiwan. Besides Prof. Kuen-Song Lin during my stay in YZU, I was cordially get inspiration from Prof. Chuin-Tih Yeh, Prof. Ay Su (Department of Mechanical Engineering/Fuel Cell Center, Yuan Ze University, Taiwan) too. I would like to give my great acknowledge to my university President Prof. Peng Tsung-Ping (彭宗平) for his inspiration and cordial help to continue my study in Taiwan. I also grateful to Prof. Wu Head, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan for his unfailing encouragement, continuing inspiration and generous help from time to time. I would like to thank all of my colleagues with whom I was working in my research laboratory (Abhijit Krishna Adhikari, Ze-Ping Wang (王治平), Khalil Al-rahman Dehvari, Khanh Toan, Dinh(丁慶全(Khanh)), Wen-Ru Chen(陳玟如(Jessie)), Chih-Ping Liu(劉志平(Terry)), Hsiu-Ping Yeh (葉琇屏(Kate)), Cheng-Yu Pan(潘承煜(Kaga)), Kai-Che Chang (張開哲(Jordan)), Kun-Yu Li (李坤禹), Chao-Shuen Chang (張朝順(Ivan), Hao-Wei Cheng (鄭皓瑋), Yu-Hsien Su (蘇育賢), Shou-Fu Cheng (鄭守富), Wei Lu (盧威(Wells), Mu-Ting Tu (凃牧廷(Jimmy), Wan-Ting Hong (洪琬婷(英文別名), Meng-Long Chuang(莊孟融(Romeo), Chao-Yen Wang (王照燕(Nana)), Tzu-Ting Chien (簡子婷(Ting)), Zong-Yan Tsai(蔡宗晏), Hung-Bin Tsai蔡宏彬(Srenty), Chang-Shaing Hsu (徐千翔( Stanley)) and also my earnest friend She Ho (M.Sc. tenure), Ngô Trung Trực (吳昌村), Shih-Hsin Chen (Peter), Shashi Bhushan Prasad, Yu-hsien Hsieh (Tony, 謝育賢, in Ph. D. tenure). Least and not last I would like to give my great attitude to Wei-Chih LI, Ph.D. (National Taiwan University) for his valuable time to help to characterize some of my sample. I never can forget his time, effort and inspiration in my Ph.D. tenure. My earnest friend Writam Banerjee (Chang Gung University) continuously encourage me to accomplish my research work and always beside with me at any instant.
I would like to thank those professors and colleagues of the department, International language and culture center who gave me kindly support. In the staying period of YZU, my friend Joanne Yang, Nailing (Teaching Excellence Center, YZU), Ruby Kao, Mindy, Lisa, Linda, Mr. Leo (Military service center, YZU) and others made great efforts helping me to settle down in YZU, improve my Chinese capabilites and to introduce their social activities and giving me valuable suggestions. Their friendship will always last in my heart. I am also grateful for the support of Late Professor Yu ke chiang, God bless his departed soul. Especially to Nailing and Joanne Yang (Teaching Excellence Center, YZU) took care of me as their own family member. Without their help, understanding, support and love, I would never achieve my goals.
Besides my scientific work, equally important thing that I was learnt in YZU an importance of teamwork. At this point I am especially grateful to my colleagues. At the end, I would like to remember all officials in Yuan Ze University and everyone was always my very good friend. I would also like to thank Professors in Taiwan for accepting to be co-referee of this thesis. Last but not least I am thankful to my family, younger brother, Kobayashi Kana (小林可奈) and everyone. Mainly to my parent who has been my side in all situations, my mother as patient, open-minded, and instructive all these years, she give me courage and inspiration to complete my Ph.D. work. My father always takes care of me and inspired me to accomplish my study. My younger brother Sumon is a key man in my family. He always takes care of my parents and inspired me to reach my goal. I really love him so much. I also acknowledge my friends both in Bangladesh and YZU, Taiwan whom are always supported my decisions and for being good friends in all this time.


CONTENT


Page No.

ACKNOWLEDGEMENT I
ABSTRACT IV
CONTENT VI
LIST OF TABLES X
LIST OF FIGURES XII

CHAPTER ONE INTRODUCTION 1
1.1 Preface 1
1.1.1 Background 1
1.2 Nucleation and Growth 5
1.2.1 Motivation and Strategy 8
1.2.2 Hydrogen Production from Methanol 10
1.3 Research Scope of the Dissertation 12
CHAPTER TWO LITERATURE REVIEW 15
2.1 Synthesis of Structured Cerium Oxides 15
2.1.1 Soft-template Techniques 15
2.1.2 Hard template Techniques 21
2.1.3 Non-template Techniques 23

2.2 Applications of Ceria Nanostructure Materials 28
2.2.1 UV–Vis Absorption 28
2.2.2 UV–Vis Absorption Shift Phenomenon 32
2.2.3 Carbon-monoxide Oxidation Phenomenon 33
2.2.4 Chromium-Contaminated Wastewater Treatment 39
2.2.5 Advantage of One-Dimensional Ceria for CH3OH/SRM Reaction 43
CHAPTER THREE EXPERIMENTAL METHODOLOGY 48
3.1. Synthesis of Ceria nanomaterials 48
3.1.1 One-Dimensional Ceria Nanomaterials 48
3.1.2 Three-Dimensional Ceria Nanomaterials 48
3.1.2(a) 3-D Flower Type CeO2 48
3.1.2(b) 3-D Cerium Organic Nanomaterial 49
3.1.3 Metallic Doped Ceria Nanomaterial 50
3.1.3(a) Preparation of CuO Doped Ceria Nanomaterial 50
3.2 Evaluation of Catalytic Activities 50
3.3 X-Ray Powder Diffraction 50
3.4 Field-emission Scanning Electron Microscopy (FESEM) 52
3.5 Low-magnification Transmission Electron Microscope (TEM) and High-resolution Transmission Electron Microscope (HR-TEM) 54
3.6 Thermo Gravimetric Analysis/Differential Thermal Analysis (TGA/DTA) 57
3.7 Nitrogen Adsorption Isotherm (ASAP) 59
3.8 Fourier Transform Spectroscopy 63
3.9 Raman Spectra Analysis 65
3.10 X-ray Photoelectron Spectroscopy (XPS) 65
3.11 Induced Couple Plasma/Atom Emission Spectroscopy (ICP/AES) 68
3.12 X-ray Absorption Spectroscopy (XANES and EXAFS) 68
3.12.1 Fundamentals of XANES and EXAFS 69
3.12.2 Experiments of EXAFS and XANES 70
3.13 Application of EXAFS/XANES on 1-D Structure 70
3.13.1 Template Method for the Syntheses of 1-D Structures 73
3.13.2 Syntheses of Bimetallic 1-D Nanostructure 75
3.14 Applications of Diffraction/SAXS 78
3.14.1 WAXS and High Energy Diffraction Measurements 78
3.14.2 Small-angle X-ray Scattering (SAXS) 79
3.14.2(a) Fundamentals of Small-angle X-ray scattering (SAXS) 79
CHAPTER 4 CHARACTERIZATION AND APPLICATION OF CERIA MATERIALS 83
4.1 Characterization 83
4.1.1 Scanning Image Analysis for the Identification of 1-D Ceria Structure 83
4.1.2 Scanning Image Analysis for the Identification of 3-D Ceria Structure 88
4.1.3 Transmission Image Analysis for the Identification of Ceria Structure 88
4.1.4 Diffraction Pattern Analysis for the Identification of Ceria Structure 100
4.1.5 Nitrogen Adsorption of Ceria Structure 107
4.1.6 FTIR spectrum analysis of Ceria Structure 111
4.1.7 RAMAN spectrum analysis of ceria and metallic doped ceria structure. 115
4.1.8 Thermal Analysis of Hierarchical Ceria Structure. 117

4.1.9 X-Ray Photoelectron Spectrum Analysis for Different Dimensional Ceria Structures 119
4.1.10 Synchroton Radiation Spectrum Analyses for Ceria Structure 123
4.2. Formation Mechanism of CeO2 Nano/Micro Structures 137
4.2.1 Surfactant Assisted 1-D CeO2 Nanostructure Formation 137
4.2.2 Non-Surfactant Assisted 1-D CeO2 Nanostructure Formation 142
4.2.3 Surfactant Assisted 3-D CeO2 Nanostructure Formation 144
4.3 Methanol Decomposition Formation postulated pathways 149
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 154
5.1 Conclusions 154
5.2 Future Works 155
REFERENCES 156

APPENDIX-I 178
APPENDIX-II 205
APPENDIX-III 212
RESUME AND PUBICATIONS


LIST of TABLES
Page No.
Table 1.1 Some reactions inside reactor and their standard enthalpies of formation. 10
Table 2.1 Details of the ceria nanomaterials UV-Vis absorption analyses. 31
Table2.2 Carbon-monoxide oxidation effect on several ceria nanostructures. 36-37
Table 2.3 Comparisons of Cr(VI) adsorption capacities of different ceria adsorbents. 42
Table 2.4 Kinetic parameters for chromium chemisorption (a) 20 ppm (b) 40 ppm and (c) 80 ppm. 42
Table 2.5 Comparison of The SRM/ATRM performances over different CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts in literatures 47
Table 4.1 Time, Temperature, Precursor and surfactant concentration effects for the formation of 1-D and 3-D ceria nanostructures. 92
Table 4.2 Specific surface area/pore size distribution of as-synthesized catalysts using BET nitrogen isotherms and crystalline size of different dimensional ceria species 110
Table 4.3 Structural parameters of commercial ceria, ceria standard and 1-D ceria nanorod powders analyzed by EXAFS. 134
Table 4.4 Structural parameters of commercial ceria, ceria standard and time effect of hierarchical ceria structure analyzed by EXAFS. 135
Table 4.5 Structural parameters of commercial ceria, ceria standard and time effect of hierarchical ceria structure analyzed by EXAFS 136
Table A.II.1 Structural parameters of ZnO nanorod, nanoparticles, nanohybrid ZnO, calcined at 500 oC and commercial powders species analyzed by EXAFS. 205
Table A.II.2 Structural parameters of Pt nanorod, nanoparticles, nanohybrid species analyzed by EXAFS. 206
Table A.II.3 Specific surface area/pore volume and crystalline size of different dimensional ceria catalysts. 207
Table A.II.4 Specific surface area/pore volume and crystalline size of ceria nanorod catalysts. 208
Table A.II.5 Characteristic FTIR bands (cm-1) of ceria-BTC compound, ceria nanorod, nanotube and ceria standard. 209
Table A.II.6 Correlation between the surface Ce3+ concentrations as derived from XPS analysis and the concentration of Ce in different types of solvent in as-synthesized ceria-BDC at 130 oC for 72 h. 210
Table A.II.7 Correlation between the surface Ce3+ concentrations as derived from XPS analysis and the concentration of Ce in different synthesis tempearature of as-synthesized ceria-BTC at 110-160 oC for 72 h and after calcinations at 400 oC for 4 h. 210
Table A.II.8 Correlation between the surface Ce3+ concentrations as derived from XPS analysis and the concentration of Ce in commercial ceria standard, ceria nanorod and copper oxide doped ceria nanorod. 211


LIST of FIGURES
Page No.
Figure 1.1 Schematic scenario of synthesis history for ceria nanostructure. 5
Figure 1.2 Research scope for different dimensional characteristic of Ceria Nanomaterials for methanol steam reforming with hydrogen generation. 14
Figure 2.1 Different types of micelle (a) normal; (b) reverse; (c) rod like, and (d) bi-layer structures for the formation of nanotubes, nanobeads, nanowires, nanorods, flower, dendrite, mesoporous and nanopetal. 21
Figure 2.2 Schematic illustration to the formation of one dimensional nanostructure through template method. 23
Figure 2.3 Schematic illustration of Kirkendall effect. 28
Figure 2.4 Adsorption rate of Cr with different concentration (a) 20 ppm (b) 40 ppm and (c) 80 ppm respectively. For each adsorption experiment 1g of CeNR sample and 500 ml of aqueous solution have been taken at room temperature. 40
Figure 2.5 Adsorption isotherms of Cr(VI) using one dimensional ceria nanorod. 40
Figure 2.6 Plots of pseudo-second order diffusion kinetic models for chromium concentration of (a) 20 ppm (b) 40 ppm and (c) 80 ppm in the 1g CeNR 500 ml solution at room temperature . 41
Figure 2.7 Methanol conversion of Cu/ZnO-Al2O3 catalyst with CeO2 binder washcoats of (a) S20-B1, (b) S20-B2, and (c) S20-B10, respectively for the steam reforming of methanol in a microreactor (steam/ MeOH = 1.3; WHSV = 16.2gMeOH h-1 gcat.-1; loading weight of washcoat catalyst = 20 mg/plate). 46
Figure 3.1 X-ray diffraction instrument devices. 51
Figure 3.2 Basic principle of FESEM. 53
Figure 3.3 Scanning electron microscopy equipments. 54
Figure 3.4 Transmission electron microscope devices. 57
Figure 3.5 TGA analyser. 58
Figure 3.6 BET plot. 60
Figure 3.7 Typical isotherm curves of materials by IUPAC. 61
Figure 3.8 Four types of hysteresis. 62
Figure 3.9 Optical diagram of a classic Michelson interferometer, which consists of a fixed mirror, a moving mirror and a beam splitter. 64
Figure 3.10 Fourier Transform Spectroscopy FTIR devices. 64
Figure 3.11 Principle of Chemical analysis of imaging spectrometer. 67
Figure 3.12 X-ray spectrometer electronic devices 67
Figure 4.1 FE-SEM images of the ceria nanorod synthesized at 100 oC for 24 h at different amount of Ce(NO3)3•6H2O (a) 0.3, (b) 1.7, (c) 6.9 and (d) 13.9 g. 86
Figure 4.2 SEM images of the ceria nanotube synthesized at washed with different concentration of 2 L hydrogen-per-oxide (a) 0.03, (b) 0.05, (c) 0.07 and (d) 0.1 M. 87
Figure 4.3 FE-SEM imagesfor the formation of 3-D ceria nanostructure at 130 oC for 72 h and precursor to organic concentration ratio 1:1 for (a) Jasmine type urea assisted hydrated ceria-BDC; (b) Coral type ceria-BDC formamide: (c) Chicken paw type hydrated ceria-BDC and (d) Hexagonal rod like hydrated ceria-BTC. 93
Figure 4.4 FE-SEM microphotos of as-synthesized hydrated ceria-BTC species at 130 oC with pH 2 for different times of (a) 0, (b) 3, (c) 6, (d) 12, (e) 24, (f) 48, (g) 72 h, and (h) 72 h sample calcinated at 400 oC for 4 h in air. 94
Figure 4.5 Effects of reaction times (0-72 h) on the aspect ratio of as-synthesized hydrated ceria-BTC species at 130 oC and pH 2 for 72 h. 95
Figure 4.6 FE-SEM microphotos of as prepared CeriaBTC species at pH =2 for different temperature, (a) 25, (b) 110, (c) 130, (d) 160 oC for 72 h. 96
Figure 4.7 FE-SEM microphotos of as prepared CeriaBTC species from precursor to organic linker (1,3,5,-Benzenetricarboxylic acid) (a) 1:0.3, (b) 1:0.5 (c) 1:2, (d) 1:3 (mol:mol)% at 130 oC for 72h with pH =2. 97
Figure 4.8 TEM/HETEM images of (a) ceria nanorod; (b) ceria nanotube; (c) ceria jasmine like flower; (d) as-synthesized hydrated ceria-BTC; (e) hierarchical ceria hexagonal rod; (d) electron diffraction pattern of hierarchical ceria hexagonal rod and (f) EDS analysis. 99
Figure 4.9 XRD patterns of (a) ceria nanorod without calcinations and (b) after calcinations . 103
Figure 4.10 XRD patterns of the as-synthesized ceria-BTC species at 130 oC with pH 2 for different times of (a) 3, (b) 6, (c) 12, (d) 24, (e) 48, (f) 72 h, and (g) 72 h sample calcinated at 400 oC for 4 h in air. 104

Figure 4.11 XRD patterns of (a) BTC standard and as-synthesized ceria-BTC hydrothermaly treated at 130 oC for 72 h, and mole ration of Ce(NO3)3•6H2O and BTC was (b) 1:0.3, (c) 1:0.5, (d) 1:2 and (e) 1:3. 105
Figure 4.12 XRD patterns of (a) ceria nanorod, (b) H2O2 0.05 mol L-1 washed ceria nanorod to ceria nanotube, (c) ceria dendrite (d) hierarchical ceria hexagonal rod. 106
Figure 4.13 Specific BET surface area of (a) ceria nanorod; (b) ceria nanotube and (c) hierarchical ceria hexagonal rod like structure [field mark: adsorption and unfield: desorption]. 109
Figure 4.14 FT-IR spectra of ceria species (a) ceria standard; (b)ceria nanorod; ceria nanotube synthesized at washed with different concentration of 2 L hydrogen-per-oxide (c) 0.01, (d) 0.03; (e) 0.05; (f) 0.07; and (g) 0.1 M. 113
Figure 4.15 FT-IR spectra of as-synthesized hexagonal-typed hydrated ceria-BTC microrod structures at 130 oC and pH 2 for 72 h for different times of (a) 0, (b) 3, (c) 6, (d) 12, (e) 24, (f) 48, (g) 72 h, (h) 72 h samples calcinated at 400 oC for 4 h in air, and (i) ceria standard. 114
Figure 4.16 Raman spectra of (a) commercial ceria powder and (b) ceria nanorod synthesized at 100 oC for 24 h with further calcination at 300 oC for 3 h. 116
Figure 4.17 TGA/DTA curves of the as-synthesized hexagonal-typed hydrated ceria-BTC microrods at 130 oC and pH 2 for 72 h. 118
Figure 4.18 X-ray photoelectron spectra of various (a) commercial ceria powder and (b) ceria nanorod synthesized at 100 oC for 24 h with further calcination at 300 oC for 3 h. 121
Figure 4.19 X-ray photoelectron spectra of various (a) commercial ceria powder and (b) ceria-BTC microrods synthesized at 130 oC for 72 h and (c) with further calcinations (hierarchical ceria structure) at 400 oC for 4 h. 122
Figure 4.20 XANES spectra of (a) Ce2O3 standard, (b) commercial ceria powder, and (c) ceria nanorod synthesized at 100 oC for 24 h with further calcination at 300 oC for 3 h. 128
Figure 4.21 Fourier transform of the Ce-LIII edge EXAFS spectra of (a) commercial ceria powder, (b) ceria nanorod species, and (c) Ce2O3 standard. The best fitting of the EXAFS spectrum is expressed by the dotted line. 129
Figure 4.22 XANES spectra of (a) CeCl3 standarad, ceria-BTC species at 130 oC with pH 2 for different times of (b) 0, (c) 24, (d) 48, (e) 72 h, (f) 72 h sample (Hierarchical ceria structure) calcinated at 400 oC for 4 h in air, (g) Ce2O3 standard, and (h) commercial ceria powder. 130
Figure 4.23 Fourier transform of the Ce-LIII edge EXAFS spectra of (a) CeCl3 standarad, ceria-BTC species at 130 oC with pH 2 for different times of (b) 0, (c) 24, (d) 48, (e) 72 h, (f) 72 h samples (hierarchical ceria structure) calcinated at 400 oC for 4 h in air, (g) Ce2O3 standard, and (h) commercial ceria powder. The best fitting of the EXAFS spectrum is expressed by the dotted line. 131
Figure 4.24 XANES spectra of (a) CeCl3 standarad, ceria-BTC species at 130 oC with pH 2 for different concentration of (b) 1:0.3, (c) 1:0.5, (d) 1:1 (e) 1:2, (f) 1:3 sample, respectively. 132
Figure 4.25 Fourier transform of the Ce-LIII edge EXAFS spectra of ceria-BTC species at 130 oC with pH 2 for different concentration of (a) 1:0.3, (b) 1:0.5, (c) 1:1 (d) 1:2, (e) 1:3 sample, respectively The best fitting of the EXAFS spectrum is expressed by the dotted line. 133
Scheme 4.1 Details of the reaction mechanism pathways for the formation of ceria nanostructures. 138
Scheme 4.2 Schematic illustrations of the structural formation process of the hexagonal-typed hydrated ceria-BTC microrods. 148
Figure 4.26 FTIR spectra analysis for methanol decomposition on (A) commercial ceria powder and (B) ceria nanorod species at the temperature range from (a) 25, (b) 80, (c) 120, (d) 160, (e) 200, and (f) 240 oC, respectively. 152
Figure 4.27 FTIR spectral analyses for methanol decomposition at the different temperatures (a) 25, (b) 80, (c) 120, (d) 160, (e) 200, and (f) 240 oC, respectively on calcined Ceria-BTC microrods. 153
Figure A.I.1 (a) Fe XANES spectra and (b) fine section of enlarged (7108–7120 eV) Fe near Kedge (7112 eV) of β-FeOOH nanorods and related Fe standards; (c) Fe XANES spectra and (d) fine section of enlarged (7108-7120 eV) Fe near K-edge (7112 eV) of α-Fe nanorods reduced in hydrogen atmosphere at 583 K and related Fe standards in the range of 7108–7120 eV. 178
Figure A.I.2 Kβ-detected XANES spectra of (a) β-FeOOH and (b) α-Fe nanorods reduced in hydrogen atmosphere at 583 K. 179
Figure A.I.3 Fourier transforms of k3χ(k) for Pt/HMM-1 after various UV-irradiation times. 180
Figure A.I.4 Time evolution of coordination numbers of Pt−Cl and Pt−Pt in EXAFS and mean length of Pt wires in TEM. 180
Figure A.I.5 Time-resolved distance distribution function P(r) obtained from measured SAXS profiles for various aspect ratios: (a) AR 6, (b) AR 4, and (c) AR 2. The inset is the enlarged profile corresponding to the seed spherical particles. The particle diameter is estimated to be 31 Å. 181
Figure A.I.6 Formation processes for gold nanorods with ARs of 2, 4, and 6. The time dependence of anisotropy shows maxima for nanorods with final-product ARs in the range 2−4. A maximum is not observed for nanorods with AR 6. 182
Figure A.I.7 FE-SEM images of 3-D ceria-BDC structure in the presence of urea at different temperatures (130 to 220 oC) and precursor Ce(NH4)2(NO3)6 ((a), (c), (e)) and Ce(NO3)3 6H2O ((b) (d) (f)), respectively. 183
Figure A.I.8 FE-SEM images of 3-D ceria-BDC structure without urea at 130 oC for 72 h in the presence of different solvent (a) formamide; (b) DMF; (c) DEF and H2O in the Ce(NO3)3. 6H2O to solvent ration 1:1. (Formaide, DMF=Dimethyl Formamide, DEF = Diethyl Formamide and H2O= DI water) 184
Figure A.I.9 FE-SEM images of 3-D ceria-BDC structure without the presence of urea at 130 oC for 72 h in solvent of formamide at the Ce(NO3)3. 6H2O to BDC concentration of (1:10). 185
Figure A.I.10 XRD patterns of as-synthesized(a) Benzene-di-carboxylic acid (BDC); (b) ceria-BDC H2O; (c) ceria-BDC formamide; (d) ceria-BDC DMF and (e) ceria-BDC DEF, respectively. 186
Figure A.I.11 XRD patterns of as-synthesized (a) ceria-NDC H2O; (b) ceria-NDC formamide; (c) ceria-NDC DMF and (d) ceria-NDC DEF, respectively. 187
Figure A.I.12 XRD patterns of Ceria nanorod before and after catalytic interaction with methanol through FTIR, respectively. 188
Figure A.I.13 Pore size distribution measurement of ceria nanorod, nanotube and ceria hexagonal nanorod, respectively and the pore size distribution calculated from the desorption branch by BJH method.[(As-synthesized ceria nanorod washed with 0.05 M or 2 L H2O2 to form ceria nanotube) 189
Figure A.I.14 BET surface area measurement of as-synthesized ceria hexagonal rod at 130 oC for 72 h before calcinations. 190
Figure A.I.15 BET surface area measurement of as-synthesized ceria BDC with the solvent effect of (a) hydrated; (b) formamide; (c) Dimethyl formamide and (d) Di-ethyl formamide, respectively at 130 oC for 72 h before calcinations. [symbol filed: adsorption and unfield: desorption]. 190
Figure A.I.16 BET surface area measurement of as-synthesized ceria NDC with the solvent effect of (a) formamide; (b) Dimethyl formamide and (c) Di-ethyl formamide, respectively at 130 oC for 72 h before calcinations. [symbol filed: adsorption and unfield: desorption]. 191
Figure A.I.17 BET surface area measurement of (a) 5 wt% ; (b) 10 wt % and (c) 20 wt % CuO-CeO2 Nanorod species. [symbol filed: adsorption and unfield: desorption]. 192
Figure A.I.18 FT-IR spectra of 1-D ceria nanorod (a) 8 h; (b) 12 h; (c) 80 oC; (d) 120 oC and 100 oC in the presence of Butanol. 193
Figure A.I.19 FT-IR spectra of as prepared CeriaBTC species from precursor to organic linker (1,3,5,-Benzenetricarboxylic acid) (a) 1:0.3, (b) 1:0.5 (c) 1:2, (d) 1:3 (mol:mol)% at 130 oC for 72h with pH =2. 194
Figure A.I.20 FT-IR spectra of as prepared CeriaBTC species at pH =2 for different temperature, (a) 25, (b) 110, (c) 130, (d) 160 oC for 72 h. 194
Figure A.I.21 Raman spectra of the as prepared CeriaBDC species with different solvent (a) BDC standard ; (b) CeO2BDCH2O; (c) CeO2BDCformamide ; (d) CeO2BDCDMF and (e) CeO2-BDC-DEF. 195
Figure A.I.22 X-ray photoelectron spectra of ceria powder with the fitting parameter. 196
Figure A.I.23 X-ray photoelectron spectra of ceria nanorod at 100 oC for 24 h with the fitting parameter. 196
Figure A.I.24 X-ray photoelectron spectra of as-synthesized ceria-BDC H2O at 130 oC for 72 h with the fitting parameter. 197
Figure A.I.25 X-ray photoelectron spectra of as-synthesized ceria-BDC formamide at 130 oC for 72 h with the fitting parameter. 197
Figure A.I.26 X-ray photoelectron spectra of as-synthesized ceria-BDC DMF at 130 oC for 72 h with the fitting parameter. 198
Figure A.I.27 X-ray photoelectron spectra of as-synthesized ceria-BDC DEF at 130 oC for 72 h with the fitting parameter. 198
Figure A.I.28 X-ray photoelectron spectra of as-synthesized ceria-BTC H2O at 110 oC for 72 h with the fitting parameter. 199
Figure A.I.29 X-ray photoelectron spectra of as-synthesized ceria-BTC H2O at 160 oC for 72 h with the fitting parameter. 199
Figure A.I.30 XPS data analyses for as synthesized hierarchical sample in 130 oC for 72 h (a) Ceria-BTC-H2O before calcinations and (b) after calcinations at 400 oC in the presence of air. 200
Figure A.I.31 X-ray photoelectron spectra of 5 wt% CuO CeNR with the fitting parameter. 201
Figure A.I.32 X-ray photoelectron spectra of 10 wt% CuO CeNR with the fitting parameter. 201
Figure A.I.33 X-ray photoelectron spectra of 15 wt% CuO CeNR with the fitting parameter. 202
Figure A.I.34 X-ray photoelectron spectra of 20 wt% CuO CeNR with the fitting parameter. 202
Figure A.I.35 Correlation between the surface Ce3+ concentrations as derived from XPS analysis and the concentration of CuO in CuO-Ceria nanorod oxides. 203
Figure A.I.36 FTIR spectra analysis for methanol decomposition on 10 wt% CuO ceria nanorod species at the temperature range from (a) 25, (b) 80, (c) 120, (d) 160, (e) 200, and (f) 240 oC, respectively. 204
Figure A.III.1 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of CeCl3 standard. The best fitting of the EXAFS spectra are expressed by the dotted lines. 212
Figure A.III.2 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 0 h sample in the concentration of 1:1. The best fitting of the EXAFS spectra are expressed by the dotted lines. 212
Figure A.III.3 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 24 h sample in the concentration of 1:1. The best fitting of the EXAFS spectra are expressed by the dotted lines. 213
Figure A.III.4 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 48 h sample in the concentration of 1:3. The best fitting of the EXAFS spectra are expressed by the dotted lines. 213
Figure A.III.5 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 72 h sample in the concentration of 1:1. The best fitting of the EXAFS spectra are expressed by the dotted lines. 214
Figure A.III.6 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 72 h sample in the concentration of 1:3. The best fitting of the EXAFS spectra are expressed by the dotted lines. 215
Figure A.III.7 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 72 h sample in the concentration of 1:2. The best fitting of the EXAFS spectra are expressed by the dotted lines. 215
Figure A.III.8 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 72 h sample in the concentration of 2:1. The best fitting of the EXAFS spectra are expressed by the dotted lines. 216
Figure A.III.9 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of ceriaBTCH2O at 130 oC for 72 h sample in the concentration of 3:1. The best fitting of the EXAFS spectra are expressed by the dotted lines. 217
Figure A.III.10 Ce-LIII edge EXAFS oscillation k2χ(k) and Fourier transform (FT) spectra of (a) commercial ceria, (b) 1-D CeNR and (c) Ce2O3 standard, respectively. The best fitting of the EXAFS spectra are expressed by the dotted lines. 218

References

[1]C. Sun, H. Li, H. Zhang, Z. Wang, L. Chen, Nanotechnology. 2005, 16(9), 1454−1463.
[2]C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Chemistry of Materials. 2005, 17(17), 4514−4522.
[3]B. Tang, L. Zhuo, J. Ge, G. Wang, Z. Shi, J. Niu, Chemical Communications. 2005(28), 3565−3567.
[4]C. Pan, D. Zhang, L. Shi, Journal of Solid State Chemistry. 2008, 181(6), 1298−1306.
[5]A. Vantomme, Z.Y. Yuan, G. Du, B.L. Su, Langmuir. 2005, 21(3), 1132−1135.
[6]K. Zhou, X. Wang, X. Sun, Q. Peng, Y. Li, Journal of Catalysis. 2005, 229(1), 206−212.
[7]P.X. Huang, F. Wu, B.L. Zhu, X.P. Gao, H.Y. Zhu, T.Y. Yan, W.P. Huang, S.H. Wu, D.Y. Song, Journal of Physical Chemistry B. 2005, 109(41), 19169−19174.
[8]H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, Journal of Physical Chemistry B. 2005, 109(51), 24380−24385.
[9]R.J. Qi, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Nanotechnology. 2005, 16(11), 2502−2506.
[10]D.E. Zhang, X.M. Ni, H.G. Zheng, X.J. Zhang, J.M. Song, Solid State Sciences. 2006, 8(11), 1290−1293.
[11]F. Gu, Z. Wang, D. Han, C. Shi, G. Guo, Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2007, 139(1), 62−68.
[12]R.J. La, Z.A. Hu, H.L. Li, X.L. Shang, Y.Y. Yang, Materials Science and Engineering A. 2004, 368(1−2), 145−148.
[13]L.A. Bruce, M. Hoang, A.E. Hughes, T.W. Turney, Applied Catalysis A: General. 1996, 134(2), 351−362.
[14]P. Löö, B. Kasemo, K.E. Keck, Journal of Catalysis. 1989, 118(2), 339−348.
[15]A. Laachir, V. Perrichon, A. Badri, J. Lamotte, E. Catherine, J.C. Lavalley, J. El Fallah, L. Hilaire, F. Le Normand, E. Quéméré, G.N. Sauvion, O. Touret, Journal of the Chemical Society, Faraday Transactions. 1991, 87(10), 1601−1609.
[16]H.C. Yao, Y.F.Y. Yao, Journal of Catalysis. 1984, 86(2), 254−265.
[17]G.S. Zafiris, R.J. Gorte, Journal of Catalysis. 1993, 139(2), 561−567.
[18]M.Y. Cui, J.X. He, N.P. Lu, Y.Y. Zheng, W.J. Dong, W.H. Tang, B.Y. Chen, C.R. Li, Materials Chemistry and Physics. 2010, 121(1−2), 314−319.
[19]D. Zhang, H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu, W. Yu, Inorganic Chemistry. 2007, 46(7), 2446−2451.
[20]C. Charitidis, P. Patsalas, S. Logothetidis, Journal of Physics: Conference Series. 2005, 10(1), 226−229.
[21]A.G. Macedo, S.E.M. Fernandes, A.A. Valente, R.A.S. Ferreira, L.D. Carlos, J. Rocha, Molecules. 2010, 15(2), 747−765.
[22]H.P. Zhou, Y.W. Zhang, H.X. Mai, X. Sun, Q. Liu, W.G. Song, C.H. Yan, Chemistry − A European Journal. 2008, 14(11), 3380−3390.
[23]P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Physical Review B − Condensed Matter and Materials Physics. 2003, 68(3), 351041−3510413.
[24]N. Imanaka, T. Masui, H. Hirai, G.Y. Adachi, Chemistry of Materials. 2003, 15(12), 2289−2291.
[25]Z. Guo, F. Jian, F. Du, Scripta Materialia. 2009, 61(1), 48−51.
[26]Y. Zhang, T. Cheng, Q. Hu, Z. Fang, K. Han, Journal of Materials Research. 2007, 22(6), 1472−1478.
[27]X. Lu, X. Li, F. Chen, C. Ni, Z. Chen, Journal of Alloys and Compounds. 2009, 476(1−2), 958−962.
[28]A. Corma, P. Atienzar, H. GarcÃa, J.Y. Chane−Ching, Nature Materials. 2004, 3(6), 394−397.
[29]M. Lundberg, B. Skårman, L.R. Wallenberg, Microporous and Mesoporous Materials. 2004, 69(3), 187−195.
[30]D.M. Lyons, J.P. McGrath, M.A. Morris, Journal of Physical Chemistry B. 2003, 107(19), 4607−4617.
[31]W. Shen, X. Dong, Y. Zhu, H. Chen, J. Shi, Microporous and Mesoporous Materials. 2005, 85(1−2), 157−162.
[32]D.M. Lyons, K.M. Ryan, M.A. Morris, Journal of Materials Chemistry. 2002, 12(4), 1207−1212.
[33]M. Lundberg, B. Skårman, F. Cesar, L. Reine Wallenberg, Microporous and Mesoporous Materials. 2002, 54(1−2), 97−103.
[34]A. Bouchara, G.J.D.A.A. Soler-Illia, J.Y. Chane-Ching, C. Sanchez, Chemical Communications. 2002(11), 1234−1235.
[35]D. Terribile, A. Trovarelli, J. Llorca, C. De Leitenburg, G. Dolcetti, Journal of Catalysis. 1998, 178(1), 299−308.
[36]D. Terribile, A. Trovarelli, C. De Leitenburg, G. Dolcetti, J. Llorca, Chemistry of Materials. 1997, 9(12), 2676−2678.
[37]N. Yi, R. Si, H. Saltsburg, M. Flytzani−Stephanopoulos, Applied Catalysis B: Environmental. 2010, 95(1−2), 87−92.
[38]N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Energy and Environmental Science. 2010, 3(6), 831−837.
[39]C.M.Y. Yeung, S.C. Tsang, Journal of Physical Chemistry C. 2009, 113(15), 6074−6087.
[40]D.E. Zhang, X.J. Zhang, X.M. Ni, J.M. Song, H.G. Zheng, ChemPhysChem. 2006, 7(12), 2468−2470.
[41]M. Yada, S. Sakai, T. Torikai, T. Watari, S. Furuta, H. Katsuki, Advanced Materials. 2004, 16(14), 1222−1226.
[42]T. Masui, K. Fujiwara, K.I. Machida, G.Y. Adachi, T. Sakata, H. Mori, Chemistry of Materials. 1997, 9(10), 2197−2204.
[43]D.-E. Zhang, X.-J. Zhang, X.-M. Ni, J.-M. Song, H.-G. Zheng, Chemical Physics Letters. 2006, 430(4−6), 326−329.
[44]D. Zhang, Z. Tong, S. Li, X. Zhang, A. Ying, European Journal of Inorganic Chemistry. 2008, 2008(35), 5476−5481.
[45]D.E. Zhang, Q. Xie, X.B. Zhang, S.Z. Li, G.Q. Han, A.L. Ying, Z.W. Tong, Micro and Nano Letters. 2010, 5(1), 58−62.
[46]C. Sun, Z. Xie, C. Xia, H. Li, L. Chen, Electrochemistry Communications. 2006, 8(5), 833−838.
[47]G. Xiao, S. Li, H. Li, L. Chen, Microporous and Mesoporous Materials. 2009, 120(3), 426−431.
[48]C. Sun, J. Sun, G. Xiao, H. Zhang, X. Qiu, H. Li, L. Chen, Journal of Physical Chemistry B. 2006, 110(27), 13445−13452.
[49]J. Sun, Y. Wang, J. Li, G. Xiao, L. Zhang, H. Li, Y. Cheng, C. Sun, Z. Cheng, Z. Dong, L. Chen, International Journal of Hydrogen Energy. 2010, 35(7), 3087−3091.
[50]Z. Guo, F. Du, Z. Cui, Materials Chemistry and Physics. 2009, 113(1), 53−56.
[51]K. Li, P. Zhao, Materials Letters. 2009, 63(23), 2013−2015.
[52]Y. Wang, F. Zhang, Y. Guo, Y. Wang, J. Ren, D. Qiao, X. Liu, G. Lu, Materials Chemistry and Physics. 2010, 120(1), 23−30.
[53]J. Chen, S. Zhong, Q. Liu, Y. Wang, S. Wang, R. Xu, L. Luo, Powder Technology. 2010, 197(1−2), 136−139.
[54]G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will, Langmuir. 2006, 22(5), 2016−2027.
[55]M. Halder, The Chemical Educator. 2007, 12(1), 33−36.
[56]R.J. Hunter, 1989, 1&2.
[57]C. Pan, D. Zhang, L. Shi, J. Fang, European Journal of Inorganic Chemistry. 2008, 2008(15), 2429−2436.
[58]S.S. Deshmukh, M. Zhang, V.I. Kovalchuk, J.L. D''Itri, Applied Catalysis B: Environmental. 2003, 45(2), 135−145.
[59]Z. Sun, H. Zhang, G. An, G. Yang, Z. Liu, Journal of Materials Chemistry. 2010, 20(10), 1947−1952.
[60]G. Chen, C. Xu, X. Song, S. Xu, Y. Ding, S. Sun, Crystal Growth and Design. 2008, 8(12), 4449−4453.
[61]S. Yang, L. Gao, Journal of the American Chemical Society. 2006, 128(29), 9330−9331.
[62]P.W. Atkins, 1998.
[63]K. Kalyanasundaram, 1987.
[64]F. Gao, Q. Lu, S. Komarneni, Journal of Nanoscience and Nanotechnology. 2006, 6(12), 3812−3819.
[65]Q. Cui, X. Dong, J. Wang, M. Li, Journal of Rare Earths. 2008, 26(5), 664−669.
[66]K.S. Lin, S. Chowdhury, H.P. Yeh, W.T. Hong, C.T. Yeh, Catalysis Today. 2011, 164(1), 251−256.
[67]C. Horny, A. Renken, L. Kiwi−Minsker, Catalysis Today. 2007, 120(1), 45−53.
[68]X. Yu, S.T. Tu, Z. Wang, Y. Qi, Journal of Power Sources. 2005, 150(1−2), 57−66.
[69]T. Kim, D.H. Lee, D.E. Park, S. Kwon, ASME J. Fuel Cell Sci. Technol.2008, 5(16), 011008.
[70]M.B. Boucher, S. Goergen, N. Yi, M. Flytzani−Stephanopoulos, Physical Chemistry Chemical Physics. 2011, 13(7), 2517−2527.
[71]K.S. Lin, C.Y. Pan, S. Chowdhury, M.T. Tu, W.T. Hong, C.T. Yeh, Molecules. 2011, 16(1), 348−366.
[72]P. Fornasiero, R. Dimonte, G.R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, Journal of Catalysis. 1995, 151(1), 168−177.
[73]R.S. Sundar, S. Deevi, Journal of Nanoparticle Research. 2006, 8(3−4), 497−509.
[74]C.G. Maciel, L.P.R. Profeti, E.M. Assaf, J.M. Assaf, Journal of Power Sources. 2011, 196(2), 747−753.
[75]C. Sun, H. Li, Z. Wang, L. Chen, X. Huang, Chemistry Letters. 2004, 33(6), 662−663.
[76]L. Yan, X. Xing, R. Yu, J. Deng, J. Chen, G. Liu, Physica B: Condensed Matter. 2007, 390(1−2), 59−64.
[77]R. Yang, L. Guo, J. Mater. Sci. 2005, 40, 1305−1307.
[78]D. Zhang, L. Huang, J. Zhang, L. Shi, Journal of Materials Science. 2008, 43(16), 5647−5650.
[79]Z. Guo, F. Du, G. Li, Z. Cui, Inorganic Chemistry. 2006, 45(10), 4167−4169.
[80]C.S. Riccardi, R.C. Lima, M.L. dos Santos, P.R. Bueno, J.A. Varela, E. Longo, Solid State Ionics. 2009, 180(2−3), 288−291.
[81]Y. Ikuma, H. Oosawa, E. Shimada, M. Kamiya, Solid State Ionics. 2002, 151(1−4), 347−352.
[82]S. Komarneni, Q.H. Li, R. Roy, Journal of Materials Chemistry. 1994, 4(12), 1903−1906.
[83]S. Komarneni, R. Pidugu, Q.H. Li, R. Roy, Journal of Materials Research. 1995, 10(7), 1687−1692.
[84]S. Komarneni, R. Roy, Q.H. Li, Materials Research Bulletin. 1992, 27(12), 1393−1405.
[85]C.H. Lu, H.C. Wang, Materials Science and Engineering B: Solid−State Materials for Advanced Technology. 2002, 90(1−2), 138−141.
[86]Y. Tao, F.H. Gong, H. Wang, H.P. Wu, G.L. Tao, Materials Chemistry and Physics. 2008, 112(3), 973−976.
[87]R. Yang, L. Guo, Chinese Journal of Inorganic Chemistry. 2004, 20(2), 152−158.
[88]S.C. Kuiry, S.D. Patil, S. Deshpande, S. Seal, Journal of Physical Chemistry B. 2005, 109(15), 6936−6939.
[89]J.H. Son, S.W. Kim, D.S. Bae, K.S. Han, J.K. Lee, C.Y. Kim, B.I. Kim, J.H. Adair, Materials Science and Engineering: A. 2008, 498(1−2), 2−4.
[90]L. Qian, J. Zhu, W. Du, X. Qian, Materials Chemistry and Physics. 2009, 115(2−3), 835−840.
[91]X.Y. Zhang, T.W. Wang, W.Q. Jiang, D. Wu, L. Liu, A.H. Duan, Chinese Chemical Letters. 2005, 16(8), 1109−1112.
[92]D. Andreescu, E. Matijević, D.V. Goia, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006, 291(1−3), 93–100.
[93]N. Uekawa, M. Ueta, Y.J. Wu, K. Kakegawa, Chemistry Letters. 2002(8), 854−855.
[94]N. Uekawa, M. Ueta, Y.J. Wu, K. Kakegawa, Journal of Materials Research. 2004, 19(4), 1087−1092.
[95]Z. Yang, L. Liu, H. Liang, H. Yang, Y. Yang, Journal of Crystal Growth. 2010, 312(3), 426−430.
[96]J.M. Herrmann, C. Hoang−Van, L. Dibansa, R. Harivololona, Journal of Catalysis. 1996, 159(2), 361−367.
[97]C. Laberty−Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher, D.R. Rolison, Chemistry of Materials. 2006, 18(1), 50−58.
[98]J.L. Gasser−Ramirez, B.C. Dunn, D.W. Ramirez, E.P. Fillerup, G.C. Turpin, Y. Shi, R.D. Ernst, R.J. Pugmire, E.M. Eyring, K.A. Pettigrew, D.R. Rolison, J.M. Harris, Journal of Non−Crystalline Solids. 2008, 354(52−54), 5509−5514.
[99]R.O. Fuentes, L.M. Acuña, M.G. Zimicz, D.G. Lamas, J.G. Sacanell, A. Gabriela Leyva, R.T. Baker, Chemistry of Materials. 2008, 20(23), 7356−7363.
[100]G. Chen, S. Sun, X. Sun, W. Fan, T. You, Inorganic Chemistry. 2009, 48(4), 1334−1338.
[101]D. Zhang, H. Fu, L. Shi, J. Fang, Q. Li, Journal of Solid State Chemistry. 2007, 180(2), 654−660.
[102]J. Fang, Z. Cao, D. Zhang, X. Shen, W. Ding, L. Shi, Journal of Rare Earths. 2008, 26(2), 153−157.
[103]Y. Li, J. Ding, J. Chen, C. Xu, B. Wei, J. Liang, D. Wu, Materials Research Bulletin. 2002, 37(2), 313−318.
[104]J. Wei, J. Ding, X. Zhang, D. Wu, Z. Wang, J. Luo, K. Wang, Materials Letters. 2005, 59(2−3), 322−325.
[105]D. Zhang, L. Shi, H. Fu, J. Fang, Carbon. 2006, 44(13), 2853−2855.
[106]H.X. Fu, D.S. Zhang, L.Y. Shi, J.H. Fang, Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities. 2007, 28(4), 617−620.
[107]D. Zhang, C. Pan, L. Shi, L. Huang, J. Fang, H. Fu, Microporous and Mesoporous Materials. 2009, 117(1−2), 193−200.
[108]S.C. Laha, R. Ryoo, Chemical Communications. 2003, 9(17), 2138−2139.
[109]I.A. Kartsonakis, P. Liatsi, I. Daniilidis, G. Kordas, Journal of the American Ceramic Society. 2008, 91(2), 372−378.
[110]I. Kartsonakis, I. Daniilidis, G. Kordas, Journal of Sol−Gel Science and Technology. 2008, 48(1), 24−31.
[111]G.S. Wu, T. Xie, X.Y. Yuan, B.C. Cheng, L.D. Zhang, Materials Research Bulletin. 2004, 39(7−8), 1023−1028.
[112]M. Hirano, E. Kato, Journal of Materials Science Letters. 1999, 18(5), 403−405.
[113]H.C. Wang, C.H. Lu, Materials Research Bulletin. 2002, 37(4), 783−792.
[114]M. Ge, C. Guo, L. Li, B. Zhang, Y. Feng, Y. Wang, Materials Letters. 2009, 63(15), 1269−1271.
[115]X. He, D. Zhang, H. Li, J. Fang, L. Shi, Particuology. 2011, 9(1), 80−85.
[116]J.J. Miao, H. Wang, Y.R. Li, J.M. Zhu, J.J. Zhu, Journal of Crystal Growth. 2005, 281(2−4), 525−529.
[117]M.L. Dos Santos, R.C. Lima, C.S. Riccardi, R.L. Tranquilin, P.R. Bueno, J.A. Varela, E. Longo, Materials Letters. 2008, 62(30), 4509−4511.
[118]W.Q. Han, L. Wu, Y. Zhu, Journal of the American Chemical Society. 2005, 127(37), 12814−12815.
[119]C. Tang, Y. Bando, B. Liu, D. Golberg, Advanced Materials. 2005, 17(24), 3005−3009.
[120]G. Chen, C. Xu, X. Song, W. Zhao, Y. Ding, S. Sun, Inorganic Chemistry. 2008, 47(2), 723−728.
[121]W. Wang, J.Y. Howe, Y. Li, X. Qiu, D.C. Joy, M.P. Paranthaman, M.J. Doktycz, B. Gu, Journal of Materials Chemistry. 2010, 20(36), 7776−7781.
[122]K. Zhou, Z. Yang, S. Yang, Chemistry of Materials. 2007, 19(6), 1215−1217.
[123]Z.L. Wang, X. Feng, Journal of Physical Chemistry B. 2003, 107(49), 13563−13566.
[124]Y.C. Chen, K.B. Chen, C.S. Lee, M.C. Lin, Journal of Physical Chemistry C. 2009, 113(13), 5031−5034.
[125]P. Martin, S.C. Parker, D.C. Sayle, G.W. Watson, Nano Letters. 2007, 7(3), 543−546.
[126]Y. Fu, Z.D. Wei, M.B. Ji, L. Li, P.K. Shen, J. Zhang, Nanoscale Research Letters. 2008, 3(11), 431−434.
[127]N. Bugayeva, J. Robinson, Materials Science and Technology. 2007, 23(2), 237−241.
[128]B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine, A. Kachouane, Thin Solid Films. 2000, 379(1−2), 23−27.
[129]B. Tatar, E.D. Sam, K. Kutlu, M. Ürgen, Journal of Materials Science. 2008, 43(15), 5102−5108.
[130]N. Izu, N. Murayama, W. Shin, I. Matsubara, S. Kanzaki, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. 2004, 43(10), 6920−6924.
[131]I. Porqueras, C. Person, C. Corbella, M. Vives, A. Pinyol, E. Bertran, Solid State Ionics. 2003, 165(1−4), 131−137.
[132]S. Kanakaraju, S. Mohan, A.K. Sood, Thin Solid Films. 1997, 305(1−2), 191−195.
[133]S. Guo, H. Arwin, S.N. Jacobsen, K. Jarrendahl, U. Helmersson, Journal of Applied Physics. 1995, 77(10), 5369−5376.
[134]R. Gallage, A. Matsuo, T. Watanabe, N. Matsushita, M. Yoshimura, Journal of Electroceramics. 2009, 22(1−3), 33−39.
[135]N. Özer, Solar Energy Materials and Solar Cells. 2001, 68(3−4), 391−400.
[136]P. Patsalas, S. Logothetidis, C. Metaxa, Applied Physics Letters. 2002, 81(3), 466.
[137]C. Sun, H. Li, L. Chen, Journal of Physics and Chemistry of Solids. 2007, 68(9), 1785−1790.
[138]D. Zhang, T. Yan, C. Pan, L. Shi, J. Zhang, Materials Chemistry and Physics. 2009, 113(2−3), 527−530.
[139]J. Guzman, S. Carrettin, A. Corma, Journal of the American Chemical Society. 2005, 127(10), 3286−3287.
[140]L.S. Zhong, J.S. Hu, A.M. Cao, Q. Liu, W.G. Song, L.J. Wan, Chemistry of Materials 2007, 19 (7), 1648−1655.
[141]X.J. Peng, Z.K. Luan, J. Ding, Z.H. Di, Y.H. Li, B.H. Tian, Materials Letters 2005, 59(4), 399−403
[142]Z.C. Di, J. Ding, X.J. Peng, Y.H. Li, Z.K. Luan, J. Liang, Chemosphere. 2006, 62(5), 861−865.
[143]C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, Journal of Physical Chemistry C. 2010, 114(21), 9865−9870.
[144]H. Xiao, Z. Ai, L. Zhang, Journal of Physical Chemistry C. 2009, 113(38), 16625–16630.
[145]Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, Catalysis Communications. 2001, 2(6−7), 195−200.
[146]D.J. Seo, W.L. Yoon, Y.G. Yoon, S.H. Park, G.G. Park, C.S. Kim, Electrochimica Acta. 2004, 50(2−3 SPEC. ISS.), 719−723.
[147]M.B. Boucher, N. Yi, F. Gittleson, B. Zugic, H. Saltsburg, M. Flytzani-Stephanopoulos, Journal of Physical Chemistry C. 2011, 115(4), 1261−1268.
[148]P.J. De Wild, M.J.F.M. Verhaak, Catalysis Today. 2000, 60(1), 3−10.
[149]G. Germani, A. Stefanescu, Y. Schuurman, A.C. van Veen, Chemical Engineering Science. 2007, 62(18−20), 5084−5091.
[150]X. Yu, S.T. Tu, Z. Wang, Y. Qi, Chemical Engineering Journal. 2006, 116(2), 123−132.
[151]G. Avgouropoulos, T. Ioannides, Applied Catalysis A: General. 2003, 244(1), 155–167.
[152]G.G. Park, S.D. Yim, Y.G. Yoon, C.S. Kim, D.J. Seo, K. Eguchi, Catalysis Today. 2005, 110(1−2), 108−113.
[153]D.E. Park, T. Kim, S. Kwon, C.K. Kim, E. Yoon, Sensors and Actuators, A: Physical. 2007, 135(1), 58−66.
[154]A. Qi, B. Peppley, K. Karan, Fuel Processing Technology. 2007, 88(1), 3−22.
[155]M.S. Lim, M.R. Kim, J. Noh, S.I. Woo, Journal of Power Sources. 2005, 140(1), 66−71.
[156]G. Huang, B.J. Liaw, C.J. Jhang, Y.Z. Chen, Applied Catalysis A: General. 2009, 358(1), 7−12.
[157]G. Avgouropoulos, J. Papavasiliou, T. Ioannides, Chemical Engineering Journal. 2009, 154(1–3), 274–280.
[158]A. Ankudinov, Journal of Synchrotron Radiation. 1999, 6(3), 236−238.
[159]M. George, Journal of Synchrotron Radiation. 2000, 7(4), 283−286.
[160]D.C. Koningsberger, R. Prins, Eds., X−Ray Absorption− Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES John Wiley & Sons New York 1988.
[161]F. Lytle, Journal of Synchrotron Radiation. 1999, 6(3), 123−134.
[162]A.I. Nesvizhskii, J.J. Rehr, Journal of Synchrotron Radiation. 1999, 6(3), 315−316.
[163]T. Ressler, Journal of Synchrotron Radiation. 1998, 5(2), 118−122.
[164]S.I. Zabinsky, J.J. Rehr, A. Ankudinov, R.C. Albers, M.J. Eller, Physical Review B. 1995, 52(4), 2995.
[165]B. Ravel, M. Newville, Journal of Synchrotron Radiation. 2005, 12(4), 537−541.
[166]M. Newville, Journal of Synchrotron Radiation. 2001, 8(2), 322−324.
[167]R.E. Benfield, J.C. Dore, D. Grandjean, M. Kr, Journal of Alloys and Compounds. 2004, 362(1−2), 48−55.
[168]A. Kida, H. Kajiyama, S. Heike, T. Hashizume, K. Koike, Applied Physics Letters. 1999, 75(4), 540−542.
[169]M. Krol, W.J. Blau, D. Grandjean, R.E. Benfield, F. Luis, P.M. Paulus, L.J. de Jongh, Journal of Magnetism and Magnetic Materials. 2002, 249(1−2), 241−245.
[170]P.M. Paulus, F. Luis, M. Kr, G. Schmid, L.J. de Jongh, Journal of Magnetism and Magnetic Materials. 2001, 224(2), 180−196.
[171]D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys.−Condes. Matter. 2001, 13(25), R433−R460.
[172]H. Cao, Z. Xu, D. Sheng, J. Hong, H. Sang, Y. Du, Journal of Materials Chemistry. 2001, 11(3), 958−960.
[173]S.Y. Chen, J. Feng, X.F. Guo, J.M. Hong, W.P. Ding, Materials Letters. 2005, 59(8−9), 985−988.
[174]O. Haas, U.F. Vogt, C. Soltmann, A. Braun, W.S. Yoon, X.Q. Yang, T. Graule, Materials Research Bulletin. 2009, 44(6), 1397−1404.
[175]F.Y. Li, R.M. Metzger, W.D. Doyle, Ieee Transactions on Magnetics. 1997, 33(5), 3715−3717.
[176]A. Sugawara, T. Coyle, G.G. Hembree, M.R. Scheinfein, Applied Physics Letters. 1997, 70(8), 1043−1045.
[177]K.−S. Lin, Z.−P. Wang, S. Chowdhury, A.K. Adhikari, Thin Solid Films. 2009, 517(17), 5192−5196.
[178]K. Alexei, P. Juris, Journal of Physics: Condensed Matter. 2000, 12(9), 1959.
[179]B. Houser, R. Ingalls, Physical Review B. 2000, 61(10), 6515.
[180]A. Kuzmin, P. Parent, Journal of Physics: Condensed Matter. 1994, 6(23), 4395.
[181]A. Kuzmin, J. Purans, Journal of Physics: Condensed Matter. 1993, 5(15), 2333.
[182]A. Kuzmin, J. Purans, P. Parent, Physica B: Condensed Matter. 1995, 208−209, 45−46.
[183]S.D. Longa, A. Arcovito, M. Girasole, J.L. Hazemann, M. Benfatto, Physical Review Letters. 2001, 87(15), 155501.
[184]G.R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.−D. Grunwaldt, A. Baiker, Chemistry of Materials. 2004, 16(6), 1126−1134.
[185]I.Y. Kim, H.−W. Ha, T.W. Kim, Y. Paik, J.−H. Choy, S.−J. Hwang, The Journal of Physical Chemistry C. 2009, 113(51), 21274−21282.
[186]S.W. Han, International Journal of Nanotechnology. 2006, 3(2−3), 396−413.
[187]R.A. Rosenberg, G.K. Shenoy, M.F. Chisholm, L.−C. Tien, D. Norton, S. Pearton, Nano Letters. 2007, 7(6), 1521−1525.
[188]T. Mizoguchi, I. Tanaka, S. Yoshioka, M. Kunisu, T. Yamamoto, W.Y. Ching, Physical Review B. 2004, 70(4), 045103.
[189]T. Mizoguchi, M. Yoshiya, J. Li, F. Oba, I. Tanaka, H. Adachi, Ultramicroscopy. 2001, 86(3−4), 363−370.
[190]I. Tanaka, T. Mizoguchi, T. Yamamoto, Journal of the American Ceramic Society. 2005, 88(8), 2013−2029.
[191]R.A. Rosenberg, G.K. Shenoy, L.C. Tien, D. Norton, S. Pearton, X.H. Sun, T.K. Sham, Applied Physics Letters. 2006, 89(9), 093118.
[192]E.S. Jeong, H.J. Yu, S.W. Han, S.J. An, J. Yoo, Y.J. Kim, G.C. Yi, Journal of Korean Physical Society. 2008, 53, 461−465.
[193]S.G. Hur, T.W. Kim, S.−J. Hwang, S.−H. Hwang, J.H. Yang, J.−H. Choy, The Journal of Physical Chemistry B. 2006, 110(4), 1599−1604.
[194]Z.D. Fu, Y.S. Cui, S.Y. Zhang, J. Chen, D.P. Yu, S.L. Zhang, L. Niu, J.Z. Jiang, Applied Physics Letters. 2007, 90(26), 3.
[195]S. Park, K. Kim, S. Seo, S. Kim, S. Han, Journal of Electronic Materials. 2006, 35(8), 1680−1684.
[196]W.I. Park, G.C. Yi, H.M. Jang, Applied Physics Letters. 2001, 79(13), 2022−2024.
[197]W.I. Park, G.C. Yi, M.Y. Kim, S.J. Pennycook, Advanced Materials. 2003, 15(6), 526−529.
[198]M.Y. Shen, et al., Journal of Physics: Condensed Matter. 1998, 10(10), L171.
[199]B.D. Busbee, S.O. Obare, C.J. Murphy, Advanced Materials. 2003, 15(5), 414−416.
[200]L. Gou, C.J. Murphy, Chemistry of Materials. 2005, 17(14), 3668−3672.
[201]N.R. Jana, L. Gearheart, C.J. Murphy, Advanced Materials. 2001, 13(18), 1389−1393.
[202]B. Nikoobakht, M.A. El−Sayed, Chemistry of Materials. 2003, 15(10), 1957−1962.
[203]T. Placido, R. Comparelli, F. Giannici, P.D. Cozzoli, G. Capitani, M. Striccoli, A. Agostiano, M.L. Curri, Chemistry of Materials. 2009, 21(18), 4192−4202.
[204]M. Tornblom, U. Henriksson, The Journal of Physical Chemistry B. 1997, 101(31), 6028−6035.
[205]R.E. Benfield, A. Filipponi, D.T. Bowron, R.J. Newport, S.J. Gurman, G. Schmid, Physica B: Condensed Matter. 1995, 208−209, 671−673.
[206]R.E. Benfield, D. Grandjean, M. Krأ¶ll, R. Pugin, T. Sawitowski, G.n. Schmid, The Journal of Physical Chemistry B. 2001, 105(10), 1961−1970.
[207]B.I. Boyanov, T.I. Morrison, The Journal of Physical Chemistry. 1996, 100(40), 16310−16317.
[208]H.M. Chen, H.C. Lai, R.S. Liu, L.Y. Jang, Chemical Physics Letters. 2006, 428(1−3), 93−97.
[209]A. Fukuoka, H. Araki, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Inorganica Chimica Acta. 2003, 350, 371−378.
[210]A. Fukuoka, N. Higashimoto, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Microporous and Mesoporous Materials. 2001, 48(1−3), 171−179.
[211]A. Fukuoka, T. Higuchi, T. Ohtake, T. Oshio, J.−i. Kimura, Y. Sakamoto, N. Shimomura, S. Inagaki, M. Ichikawa, Chemistry of Materials. 2005, 18(2), 337−343.
[212]C.H. Ko, R. Ryoo, Chemical Communications. 1996(21), 2467−2468.
[213]Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C.H. Ko, H.J. Shin, R. Ryoo, Angewandte Chemie International Edition. 2000, 39(17), 3107−3110.
[214]R. Ryoo, J.M. Kim, C.H. Ko, C.H. Shin, The Journal of Physical Chemistry. 1996, 100(45), 17718−17721.
[215]Y. Sakamoto, A. Fukuoka, T. Higuchi, N. Shimomura, S. Inagaki, M. Ichikawa, The Journal of Physical Chemistry B. 2003, 108(3), 853−858.
[216]M. Sasaki, M. Osada, N. Higashimoto, T. Yamamoto, A. Fukuoka, M. Ichikawa, Journal of Molecular Catalysis A: Chemical. 1999, 141(1−3), 223−240.
[217]H.J. Shin, R. Ryoo, Z. Liu, O. Terasaki, Journal of the American Chemical Society. 2001, 123(6), 1246−1247.
[218]G.A. Somorjai, H. Frei, J.Y. Park, Journal of the American Chemical Society. 2009, 131(46), 16589−16605.
[219]X.−H. Sun, N.−B. Wong, C.−P. Li, S.−T. Lee, P.−S.G. Kim, T.−K. Sham, Chemistry of Materials. 2004, 16(6), 1143−1152.
[220]O. Terasaki, Z. Liu, T. Ohsuna, H.J. Shin, R. Ryoo, Microscopy and Microanalysis. 2002, 8(01), 35−39.
[221]C.M. Yang, H.S. Sheu, K.J. Chao, Advanced Functional Materials. 2002, 12(2), 143−148.
[222]C.−m. Yang, M. Kalwei, F. Schüth, K.−j. Chao, Applied Catalysis A: General. 2003, 254(2), 289−296.
[223]C.−m. Yang, P.−h. Liu, Y.−f. Ho, C.−y. Chiu, K.−j. Chao, Chemistry of Materials. 2002, 15(1), 275−280.
[224]A. Fukuoka, N. Higashimoto, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Topics in Catalysis. 2002, 18(1), 73−78.
[225]M. Michaelis, A. Henglein, The Journal of Physical Chemistry. 1992, 96(11), 4719−4724.
[226]X. Teng, M. Feygenson, Q. Wang, J. He, W. Du, A.I. Frenkel, W. Han, M. Aronson, Nano Letters. 2009, 9(9), 3177−3184.
[227]G. Paglia, E.S. Božin, D. Vengust, D. Mihailovic, S.J.L. Billinge, Chemistry of Materials. 2005, 18(1), 100−106.
[228]X. Teng, Q. Wang, P. Liu, W. Han, A.I. Frenkel, Wen, N. Marinkovic, J.C. Hanson, J.A. Rodriguez, Journal of The American Chemical Society. 2008, 130(3), 1093−1101.
[229]P. Zhang, X. Zhou, Y. Tang, T.K. Sham, Langmuir. 2005, 21(18), 8502−8508.
[230]H.−P. Liang, Y.−G. Guo, H.−M. Zhang, J.−S. Hu, L.−J. Wan, C.−L. Bai, Chemical Communications. 2004(13), 1496−1497.
[231]J. Luo, P.N. Njoki, Y. Lin, L. Wang, C.J. Zhong, Electrochemistry Communications. 2006, 8(4), 581−587.
[232]H.M. Chen, C.F. Hsin, P.Y. Chen, R.-S. Liu, S.-F. Hu, C.-Y. Huang, J.-F. Lee, L.-Y. Jang, Journal of The American Chemical Society. 2009, 131(43), 15794−15801.
[233]J.-I. Park, M.G. Kim, Y.-w. Jun, J.S. Lee, W.-r. Lee, J. Cheon, Journal of The American Chemical Society. 2004, 126(29), 9072−9078.
[234]T.O. Ely, C. Pan, C. Amiens, B. Chaudret, F. Dassenoy, P. Lecante, M.J. Casanove, A. Mosset, M. Respaud, J.M. Broto, The Journal of Physical Chemistry B. 2000, 104(4), 695−702.
[235]C.-R. Bian, S. Suzuki, K. Asakura, L. Ping, N. Toshima, The Journal of Physical Chemistry B. 2002, 106(34), 8587−8598.
[236]B.D. Yuhas, S.E. Habas, S.C. Fakra, T. Mokari, ACS Nano. 2009, 3(11), 3369−3376.
[237]B.-J. Hwang, L.S. Sarma, C.-H. Chen, C. Bock, F.-J. Lai, S.-H. Chang, S.-C. Yen, D.-G. Liu, H.-S. Sheu, J.-F. Lee, The Journal of Physical Chemistry C. 2008, 112(50), 19922−19929.
[238]E.K. Hlil, R. Baudoing-Savois, B. Moraweck, A.J. Renouprez, The Journal of Physical Chemistry. 1996, 100(8), 3102−3107.
[239]J. Girardon, E. Quinet, A. Gribovalconstant, P. Chernavskii, L. Gengembre, A. Khodakov, Journal of Catalysis. 2007, 248(2), 143−157.
[240]B.J. Hwang, Y.W. Tsai, L.S. Sarma, C.H. Chen, J.F. Lee, H.H. Strehblow, The Journal of Physical Chemistry B. 2004, 108(39), 15096−15102.
[241]D.-Y. Wang, C.-H. Chen, H.-C. Yen, Y.-L. Lin, P.-Y. Huang, B.-J. Hwang, C.-C. Chen, Journal of The American Chemical Society. 2007, 129(6), 1538−1540.
[242]N. Escola, C. Bondía, D. Murgida, L. Shimon, F. Doctorovich, Chemistry-a European Journal. 2007, 13(30), 8428−8436.
[243]A.A. Guda, S.P. Lau, M.A. Soldatov, N. Yu Smolentsev, V.L. Mazalova, X.H. Ji, A.V. Soldatov, Journal of Physics: Conference Series. 2009, 190.
[244]J.M. Velazquez, C. Jaye, D.A. Fischer, S. Banerjee, The Journal of Physical Chemistry C. 2009, 113(18), 7639−7645.
[245]N. Kumagai, H. Ooto, N. Kumagai, Journal of Power Sources. 1997, 68(2), 600−603.
[246]M.M. Thackeray, M.F. Mansuetto, J.B. Bates, Journal of Power Sources. 1997, 68(1), 153−158.
[247]H.N. Yoo, D.H. Park, S.-J. Hwang, Journal of Power Sources. 2008, 185(2), 1374−1379.
[248]F. Jiao, H. Frei, Angewandte Chemie International Edition. 2009, 48(10), 1841−1844.
[249]K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue, K. Domen, The Journal of Physical Chemistry C. 2007, 111(20), 7554−7560.
[250]T. Büsgen, M. Hilgendorff, S. Irsen, F. Wilhelm, A. Rogalev, D. Goll, M. Giersig, The Journal of Physical Chemistry C. 2008, 112(7), 2412−2417.
[251]B.D. Yuhas, S. Fakra, M.A. Marcus, P. Yang, Nano Letters. 2007, 7(4), 905−909.
[252]T. Yao, W. Yan, Z. Sun, Z. Pan, Y. Xie, Y. Jiang, J. Ye, F. Hu, S. Wei, The Journal of Physical Chemistry C. 2009, 113(32), 14114−14118.
[253]J.S. Kulkarni, O. Kazakova, D. Erts, M.A. Morris, M.T. Shaw, J.D. Holmes, Chemistry of Materials. 2005, 17(14), 3615−3619.
[254]Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, B.T. Jonker, Science. 2002, 295(5555), 651−654.
[255]Y.D. Park, A. Wilson, A.T. Hanbicki, J.E. Mattson, T. Ambrose, G. Spanos, B.T. Jonker, Applied Physics Letters. 2001, 78(18), 2739−2741.
[256]S. Cho, S. Choi, S. Hong, Y. Kim, J. Ketterson, B.-J. Kim, Y. Kim, J.-H. Jung, Physical Review B. 2002, 66(3).
[257]F. Martelli, S. Rubini, M. Piccin, G. Bais, F. Jabeen, S. De Franceschi, V. Grillo, E. Carlino, F. D''Acapito, F. Boscherini, S. Cabrini, M. Lazzarino, L. Businaro, F. Romanato, A. Franciosi, Nano Letters. 2006, 6(9), 2130−2134.
[258]R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, F. Gozzo, M. Garcia-Hernandez, M.A. Garcia, R. Cingolani, P.D. Cozzoli, Journal of The American Chemical Society. 2010, 132(7), 2437−2464.
[259]R.K. Selvan, V. Krishnan, C.O. Augustin, H. Bertagnolli, C.S. Kim, A. Gedanken, Chemistry of Materials. 2007, 20(2), 429−439.
[260]S.S. Ata-Allah, A. Hashhash, Journal of Magnetism and Magnetic Materials. 2006, 307(2), 191−197.
[261]V. Krishnan, R.K. Selvan, C.O. Augustin, A. Gedanken, H. Bertagnolli, The Journal of Physical Chemistry C. 2007, 111(45), 16724−16733.
[262]S. Chkoundali, S. Ammar, N. Jouini, F. Fiévet, P. Molinié, M. Danot, F. Villain, J.M. Grenèche, Journal of Physics Condensed Matter. 2004, 16(24), 4357−4372.
[263]X. Chen, Q. Cai, W. Wang, Z. Chen, Z. Wu, Z. Wu, C. Feng, Q. Li, The Journal of Physical Chemistry C. 2007, 111(12), 4512−4518.
[264]G. Audoit, J.S. Kulkarni, M.A. Morris, J.D. Holmes, Journal of Materials Chemistry. 2007, 17(16), 1608−1613.
[265]W.-Q. Han, W. Wen, J.C. Hanson, X. Teng, N. Marinkovic, J.A. Rodriguez, The Journal of Physical Chemistry C. 2009, 113(52), 21949−21955.
[266]C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, The Journal of Physical Chemistry B. 2002, 106(41), 10701−10705.
[267]R. Kiebach, N. Pienack, W. Bensch, J.-D. Grunwaldt, A. Michailovski, A. Baiker, T. Fox, Y. Zhou, G.R. Patzke, Chemistry of Materials. 2008, 20(9), 3022−3033.
[268]R.E. Benfield, D. Grandjean, J.C. Dore, Z. Wu, M. Kröll, T. Sawitowski, G. Schmid, Eur. Phys. J. D. 2001, 16(1−3), 399−402.
[269]R.E. Benfield, A. Filipponi, N. Morgante, G. Schmid, Journal of Organometallic Chemistry. 1999, 573(1−2), 299−304.
[270]G. Meitzner, G.H. Via, F.W. Lytle, J.H. Sinfelt, The Journal of Physical Chemistry. 1992, 96(12), 4960−4964.
[271]D.H. Rapoport, W. Vogel, H. Cölfen, R. Schlögl, The Journal of Physical Chemistry B. 1997, 101(21), 4175−4183.
[272]C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Physical Review Letters. 1997, 79(10), 1873−1876.
[273]I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, European Physical Journal D. 1999, 9(1−4), 211−215.
[274]J. Waser, uuml, rg, V. Schomaker, Reviews of Modern Physics. 1953, 25(3), 671.
[275]K. Fukuyama, T. Nishizawa, K. Nishikawa, Carbon. 2001, 39(13), 2017−2021.
[276]K. Fukuyama, T. Nishizawa, K. Nishikawa, Carbon. 2001, 39(12), 1863−1867.
[277]H. Kaya, Journal of Applied Crystallography. 2004, 37(2), 223−230.
[278]H. Kaya, N.R. De Souza, Journal of Applied Crystallography. 2004, 37(3), 508−509.
[279]T. Morita, Y. Hatakeyama, K. Nishikawa, E. Tanaka, R. Shingai, H. Murai, H. Nakano, K. Hino, Chemical Physics. 2009, 364(1−3), 14−18.
[280]T. Morita, E. Tanaka, Y. Inagaki, H. Hotta, R. Shingai, Y. Hatakeyama, K. Nishikawa, H. Murai, H. Nakano, K. Hino, The Journal of Physical Chemistry C. 2010, 114(9), 3804−3810.
[281]N.R. Jana, L.A. Gearheart, S.O. Obare, C.J. Johnson, K.J. Edler, S. Mann, C.J. Murphy, Journal of Materials Chemistry. 2002, 12(10), 2909−2912.
[282]C.C. Tang, Y. Bando, B.D. Liu, D. Golberg, Advanced Materials. 2005, 17(24), 3005−3009.
[283]H. An, D. Xiao, E. Wang, Y. Li, L. Xu, New Journal of Chemistry. 2005, 29(5).
[284]J.−W. Cheng, S.−T. Zheng, G.−Y. Yang, Inorganic Chemistry. 2007, 46(24), 10261−10267.
[285]S.K. Ghosh, P.K. Bharadwaj, Inorganic Chemistry. 2003, 42(25), 8250−8254.
[286]J. Li, X. Yu, H. Wang, K. Xu, X. Wu, L. Hou, Transition Metal Chemistry. 2006, 31(6), 770−775.
[287]J.P.S. Mowat, J.A. Groves, M.T. Wharmby, S.R. Miller, Y. Li, P. Lightfoot, P.A. Wright, Journal of Solid State Chemistry. 2009.
[288]S. Neogi, P.K. Bharadwaj, Polyhedron. 2006, 25(7), 1491−1497.
[289]N. Pan, Y. Bian, M. Yokoyama, R. Li, T. Fukuda, S. Neya, J. Jiang, N. Kobayashi, European Journal of Inorganic Chemistry. 2008, 2008(35), 5519−5523.
[290]D. Shi, H. Yu, H. Pang, Y. Chen, Solid State Sciences. 2008, 10(7), 847−853.
[291]D.−M. Shi, F.−X. Ma, C.−J. Zhang, S. Lu, Y.−G. Chen, Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2008, 634(4), 758−763.
[292]B.R. Srinivasan, S.Y. Shetgaonkar, P. Raghavaiah, Polyhedron. 2009, 28(14), 2879−2886.
[293]J.C. Tan, J.D. Furman, A.K. Cheetham, Journal of the American Chemical Society. 2009.
[294]J. Yang, N. Lu, G. Zhang, L. Cheng, S.−H. Gou, Polyhedron. 2008, 27(9−10), 2119−2126.
[295]L.−Q. Yu, R.−D. Huang, Y.−Q. Xu, T.−F. Liu, W. Chu, C.−W. Hu, Inorganica Chimica Acta. 2008, 361(7), 2115−2122.
[296]S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Crystal Growth & Design. 2007, 7(5), 950−955
[297]D. Zhang, X. Ni, H. Zheng, X. Zhang, J. Song, Solid State Sciences. 2006, 8(11), 1290−1293.
[298]M. Leoni, R. Di Maggio, S. Polizzi, P. Scardi, Journal of the American Ceramic Society. 2004, 87(6), 1133−1140.
[299]Tana, M. Zhang, J. Li, H. Li, Y. Li, W. Shen, Catalysis Today. 2009, 148(1−2), 179−183.
[300]C. Tang, Y. Bando, T. Sato, The Journal of Physical Chemistry B. 2002, 106(30), 7449−7452.
[301]K.S. Lin, S. Chowdhury, International Journal of Molecular Science. 2010, 11(9), 3226–32251.
[302]F. Zhou, X. Ni, Y. Zhang, H. Zheng, Journal of Colloid and Interface Science. 2007, 307(1), 135−138.
[303]Q. Yu, X. Wu, C. Tang, L. Qi, B. Liu, F. Gao, K. Sun, L. Dong, Y. Chen, Journal of Colloid and Interface Science. 2011, 354(1), 341−352.
[304]C. Jung, A. Kundu, S. Nam, H. Lee, Applied Catalysis B−environmental. 2008, 84(3−4), 426−432.
[305]P. Zhu, J. Li, S. Zuo, R. Zhou, Applied Surface Science. 2008, 255(5, Part 2), 2903−2909.
[306]G. Avgouropoulos, Applied Catalysis A−general. 2003, 244(1), 155−167.
[307]S. Pradhan, A.S. Reddy, R.N. Devi, S. Chilukuri, Catalysis Today. 2009, 141(1−2), 72−76.
[308]G. Avgouropoulos, T. Ioannides, Journal of Molecular Catalysis A−chemical. 2008, 296(1−2), 47−53.
[309]E.K. Goharshadi, S. Samiee, P. Nancarrow, Journal of Colloid and Interface Science. 2011, 356(2), 473−480.
[310]S. Gnanam, V. Rajendran, Journal of Sol−Gel Science and Technology. 2011, 58(1), 62−69.
[311]B.M. Reddy, P. Lakshmanan, A. Khan, C. López-Cartes, T.C. Rojas, A. Fernández, The Journal of Physical Chemistry B. 2005, 109(5), 1781−1787.
[312]Y.M. Choi, H. Abernathy, H.−T. Chen, M.C. Lin, M. Liu, ChemPhysChem. 2006, 7(9), 1957−1963.
[313]R.C. Maher, L.F. Cohen, P. Lohsoontorn, D.J.L. Brett, N.P. Brandon, Journal of Physical Chemistry A. 2008, 112(7), 1497−1501.
[314]R. Łyszczek, Thermochimica Acta. 2010, 509(1−2), 120−127.
[315]R. Łyszczek, Journal of Thermal Analysis and Calorimetry. 2008, 91(2), 595−599.
[316]P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, Journal of the Chemical Society, Dalton Transactions. 1976(17), 1686−1698.
[317]W. Xiao, Q. Guo, E.G. Wang, Chemical Physics Letters. 2003, 368(5−6), 527−531.
[318]A.Q. Wang, P. Punchaipetch, R.M. Wallace, T.D. Golden, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 2003, 21(3), 1169−1175.
[319]M. Romeo, K. Bak, J. El Fallah, F. Le Normand, L. Hilaire, Surface and Interface Analysis. 1993, 20(6), 508−512.
[320]A.E. Nelson, K.H. Schulz, Applied Surface Science. 2003, 210(3−4), 206−221.
[321]A.E. Hughes, R.J. Taylor, B.R.W. Hinton, L. Wilson, Surface and Interface Analysis. 1995, 23(7−8), 540−550.
[322]X. Luo, R. Wang, J. Ni, J. Lin, B. Lin, X. Xu, K. Wei, Catalysis Letters. 2009, 133(3), 382-387.
[323]F. Zhang, P. Wang, J. Koberstein, S. Khalid, S.-W. Chan, Surface Science. 2004, 563(1−3), 74−82.
[324]F. Le Normand, L. Hilaire, K. Kili, G. Krill, G. Maire, The Journal of Physical Chemistry. 1988, 92(9), 2561−2568.
[325]M. Fernandez-García, Catal. Rev.-Sci. Eng.2002, 44(1), 59−121.
[326]A. Soldatov, T. Ivanchenko, S.D. Longa, A. Kotani, Y. Iwamoto, A. Bianconi, Physical Review B. 1994, 50(8), 5074−5080.
[327]V. Fernandes, P. Schio, A.J.A. De Oliveira, W.A. Ortiz, P. Fichtner, L. Amaral, I.L. Graff, J. Varalda, N. Mattoso, W.H. Schreiner, D.H. Mosca, Journal of Physics Condensed Matter. 2010, 22(21).
[328]F. Le Normand, L. Hilaire, K. Kili, G. Krill, G. Maire, Journal of Physical Chemistry. 1988, 92(9), 2561−2568.
[329]A. Bianconi, Journal of Magnetism and Magnetic Materials. 1985, 47−48, 209−211.
[330]D. Mullins, Surface Science. 1998, 409(2), 307−319.
[331]S.L.P. Savin, A.V. Chadwick, M.E. Smith, L.A. O''Dell, Physica Status Solidi (c). 2007, 4(3), 719−722.
[332]A. Bianconi, S. Stizza, Physical Review B. 1982, 25(4), 2477−2482.
[333]G. Krill, J.P. Kappler, A. Meyer, L. Abadli, M.F. Ravet, Journal of Physics F: Metal Physics. 1981, 11(8), 1713−1725.
[334]J.F. Lee, M.T. Tang, W.C. Shih, R.S. Liu, Materials Research Bulletin. 2002, 37(3), 555−562.
[335]X. Wang, J.A. Rodriguez, J.C. Hanson, D. Gamarra, A. Martínez−Arias, M. Fernández−García, The Journal of Physical Chemistry B. 2005, 110(1), 428−434.
[336]A.M. Shahin, F. Grandjean, G.J. Long, T.P. Schuman, Chemistry of Materials. 2004, 17(2), 315−321.
[337]A. Bumajdad, M.I. Zaki, J. Eastoe, L. Pasupulety, Journal of Colloid and Interface Science. 2006, 302(2), 501−508.
[338]Q. Yuan, H.−H. Duan, L.−L. Li, L.−D. Sun, Y.−W. Zhang, C.−H. Yan, Journal of Colloid and Interface Science. 2009, 335(2), 151−167.
[339]A. Sonnauer, C. Näther, H.A. Höppe, J. Senker, N. Stock, Inorganic Chemistry. 2007, 46(23), 9968−9974.
[340]T.F. Tadros, in: Applied Surfactants, Wiley−VCH Verlag GmbH & Co. KGaA 2005, p. 1−17.
[341]T.F. Tadros, in: Applied Surfactants, Wiley−VCH Verlag GmbH & Co. KGaA 2005, p. 19−51.
[342]T.F. Tadros, in: Applied Surfactants, Wiley−VCH Verlag GmbH & Co. KGaA 2005, p. 53−72.
[343]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 73−84.
[344]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 85−113.
[345]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 115−185.
[346]T.F. Tadros, in: Applied Surfactants, Wiley−VCH Verlag GmbH & Co. KGaA 2005, p. 187-257.
[347]T.F. Tadros, in: Applied Surfactants, Wiley−VCH Verlag GmbH & Co. KGaA 2005, p. 259-284.
[348]T.F. Tadros, in: Applied Surfactants, Wiley−VCH Verlag GmbH & Co. KGaA 2005, p. 285−308.
[349]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 309−334.
[350]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 335−397.
[351]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 399−432.
[352]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 433−501.
[353]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 503−594.
[354]T.F. Tadros, in: Applied Surfactants, Wiley-VCH Verlag GmbH & Co. KGaA 2005, p. 595−629.
[355]J. Li, G. Lu, H. Li, Y. Wang, Y. Guo, Y. Guo, Journal of Colloid and Interface Science. 2011, 360(1), 93−99.
[356]C. Li, Q. Xin, The Journal of Physical Chemistry. 1992, 96(19), 7714−7718.
[357]A. Gazsi, T. Bánsági, F. Solymosi, Catalysis Letters. 2009, 131(1), 33−41.
[358]F. Boccuzzi, A. Chiorino, M. Manzoli, Journal of Power Sources. 2003, 118(1), 304−310.
[359]A. Badri, C. Binet, J.-C. Lavalley, Journal of the Chemical Society, Faraday Transactions. 1997, 93(6), 1159−1168.
[360]F.B. Weng, B.S. Jou, A. Su, S.H. Chan, P.H. Chi, Journal of Power Sources. 2007, 171(1), 179−185.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top