跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林勝偉
研究生(外文):Sheng-Wei Lin
論文名稱:鈀濃度效應對無鉛銲接之影響
論文名稱(外文):Effect of Pd Concentration on the Interfacial Reaction between Lead-Free Solders and Ni
指導教授:何政恩
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:69
中文關鍵詞:鈀濃度錫-鈀合金錫銀銅合金鈀-鎳-錫 三元相圖高速推球測試背向散射電子繞射
外文關鍵詞:Pd concentrationSn-Pd alloySn3Ag0.5Cu(Pd,Ni)Sn4Pd-Ni-Sn isothermhigh-speed-ball-shear testEBSD
相關次數:
  • 被引用被引用:1
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,Pd金屬薄膜廣泛被應用於Au/Pd/Ni(P) (ENEPIG) 三層結構的表面處理層中,以避免 Au/Ni(P) (ENIG) 雙層結構處理層最為人詬病的黑墊問題 (black pad)。在與銲料進行銲接反應時,表層的Au、Pd鍍層會快速的溶入銲料合金中,而底部的Ni(P)層則緊接著與含有不同Pd(或Au)濃度的銲料進行界面反應。銲料中Pd濃度的高低,主要係由不同Pd鍍層的厚度與銲點尺寸來決定。隨著電子產業的發展,單位尺寸下元件的功能不斷增,則銲點的尺寸勢必將不斷的縮小且數量不斷的增加。由於銲料體積與尺寸是成三次方關係,而Pd金屬主要來源的銲墊表面積則是與尺寸成平方關係,所以在尺寸縮小的同時,即使是使用相同厚度的Pd金屬鍍層,但所產生的Pd濃度卻會大幅的提高。而本研究第一部分實驗利用自行配置不同Pd
濃度的銲料,與電鍍Ni銲墊進行界面反應,結果發現,界面反應的產物對Pd濃度非常敏感,當Pd濃度較低時(低於 0.05 wt.% ),介面的產物只有一層連續的Ni3Sn4,而當Pd濃度些微上升至0.1 wt.%時,除了連續的Ni3Sn4之外,還有許多不連續的介金屬在界面生成,經由EBSD與EPMA的驗證,此不連續的產物為base on PdSn4結構的(Pd,Ni)Sn4,而當鈀濃度高於0.2 wt.%時,此(Pd,Ni)Sn4則在Ni3Sn4上形成緻密的連續層,藉由高速推球的所測得的界面性質結果顯示,當界面形成(Pd,Ni)Sn4/Ni3Sn4雙層結構時會大幅降低銲點的機械強度。
而本研究第二部分更進一步利用業界慣用的Sn3Ag0.5Cu銲料合金融入不同濃度的Pd來與電鍍Ni銲墊來進行反應。結果顯示,當Pd濃度高於0.3 wt.%時,(Pd,Ni)Sn4 亦開始在界面形成,且銲點的機械性質隨之下降。此外本研究亦發現銲點中Cu金屬的存在能有效抑制(Pd,Ni)Sn4在界面形成連續層,避免銲點界面的脆性斷裂發生。因此,可避免隨Pd濃度提升所造成的Pd-embrittlememt 現象。


The Pd concentration effect on the interfacial reaction of the Ni/Sn-xPd (x = 0.05 – 1 wt.%) and Ni/Sn3Ag0.5Cu–xPd alloys (x = 0 – 1 wt.%) system were investigated in this study. We found that a slight variation in the Pd concentration produced a completely different reaction product(s) in spite of only a 0.05 wt.% difference. For the case in Ni/Sn-xPd reactions, when the Pd concentration was high (more than 0.2 wt.%), a Pd-Ni-Sn layer over Ni3Sn4 was created. The Pd-Ni-Sn was identified to be the PdSn4-based structure through electron backscattered diffraction (EBSD) analysis. In contrast, the Ni3Sn4 replaced the (Pd,Ni)Sn4 when the Pd concentration was below 0.05 wt.%. A Pd-Ni-Sn isotherm simulated by the CALPHAD method was utilized to rationalize the above transition. Additionally, the mechanical reliability in response of the interfacial microstructure was evaluated through a high-speed-ball-shear (HSBS) test. The correlation of the interfacial strength with various Pd concentrations will be established in this study. The interfacial reaction between Ni and Sn3Ag0.5Cu–xPd alloys (x = 0 – 1 wt.%) at 250oC and the mechanical reliability of the solder joints were investigated in this study. For the case in Ni/Sn3Ag0.5Cu–xPd reactions, when x was low (≤ 0.2 wt.%), the reaction product at the Ni/SnAgCu–xPd interface was a layer of (Cu,Ni)6Sn5. An increase of x to 0.3 wt.% produced one additional (Pd,Ni)Sn4 compound that was discontinuously scattered above the (Cu,Ni)6Sn5. When x was relatively high (0.5 wt.% – 1 wt.%), a dual layer of (Pd,Ni)Sn4–(Cu,Ni)6Sn5 developed with the reaction time. The results of HSBS test showed that the mechanical strengths of the Ni/Sn3Ag0.5Cu–xPd joints also degrade with increasing x, especially when x reached a high level equal to or greater than 0.3 wt.%. This degradation corresponded to the growth of (Pd,Ni)Sn4 at the interface, and joints easily failed along the boundaries of solder/(Pd,Ni)Sn4 and (Pd,Ni)Sn4/(Cu,Ni)6Sn5 in the HSBS test. The (Pd,Ni)Sn4–induced joint failure (Pd–embrittlement) was alleviated by doping the solder with an appropriate amount of Cu. When the Cu concentration increased to 1 wt.% and the Pd concentration did not exceed 0.5 wt.%, the growth of (Pd,Ni)Sn4 could be thoroughly inhibited, thereby avoiding the occurrence of the Pd–embrittlement in solder joints.

Chinese Abstract i
English Abstract iii
Contents v
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
1.1 Electroless Nickel/Immersion Gold (ENIG) 1
1.2 Challenges and issues of ENIG 1
1.3 Electroless Nickel/Electroless Palladium/Immersion Gold
(ENEPIG) 5
1.4 The objective of this study 7
Chapter 2 Literature review 10
2.1 The Au concentration effect 10
2.2 The Zn concentration effect 12
2.3 The Cu concentration effect 16
Chapter 3 Experimental procedures 20
Chapter 4 Results 24
4.1 Low-Pd concentration cases in Sn-xPd/Ni system 24
4.2 High-Pd concentration cases in Sn-xPd/Ni system 30
4.3 High speed ball shear test results of Sn-xPd/Ni interfaces 33
4.4 Interfacial microstructures in Sn3Ag0.5Cu-xPd/Ni system 37
4.5 High speed ball shear test results of Sn3Ag0.5Pd-xPd/Ni interfaces 43
Chapter 5 Discussions 51
5.1 Low-Pd concentration cases in Sn-xPd/Ni system 51
5.2 High-Pd concentration cases in Sn-xPd/Ni system 56
5.3 Interfacial results in Sn3Ag0.5Cu-xPd/Ni system 60
Chapter 6 Conclusions 64
References 66


[1] C. E. Ho, Y. M. Chen, and C. R. Kao, J. Electron. Mater., vol.28, p.1231, 1999.
[2] P. Snugovsky, P. Arrowsmith, and M. Romansky, J. Electron. Mater., vol.30, p.1262, 2001.
[3] R. J. Coyle, D. E. H. Popps, A. Mawer, D. P. Cullen, G. M. Wenger, and P. P. Solan, IEEE T. Compon. Pack. T., vol.26, p.724, 2003.
[4] K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, JOM, vol.58, p.75, 2006.
[5] K. Suganuma and K. S. Kim, JOM, vol.60, p.61, 2008.
[6] Z. Mei, P. Callery, D. Fisher, F. Hua and J. Glzer, Adv. Electron. Pack., vol.2, p.1543, 1997.
[7] B. K. Kim, S. J. Lee, J. Y. Kim, K. Y. Ji, Y. J. Yoon, M. Y. Kim, S. H. Park, and J. S. Yoo, J. Electron. Mater., vol.37, p.527, 2008.
[8] H. Roberts and K. Johal, Lead-free soldering, 9, J. Bath ed., New York: Springer Press, p.221, 2007.
[9] P. T. Vianco, Circuit World, vol.25, p.6, 1998.

[10] P. G. Kim, K. N. Tu, and D. C. Abbott, J. Appl. Phys., vol.84, p.770, 1998.
[11] G. Ghosh, J. Electron. Mater., vol.28, p.1238, 1999.
[12] S. P. Peng, W. H. Wu, C. E. Ho, and Y. M. Huang, J. Alloy. Compd.,vol.493, p.431, 2010.
[13] K. Masui and M. Kajihara, J. Alloy. Compd., vol.485, p.144, 2009.
[14] J. Vizdal, A. Kroupa, J. Popovic, and A. Zemanova, Adv. Eng. Mater., vol.8, p.164, 2006.
[15] C. E. Ho, W. Gierlotka, and S. W. Lin, J. Mater. Res., vol.25, p.2078, 2010.
[16] C. E. Ho, S. W. Lin, and Y. C. Lin, J. Alloy. Compd., vol.509, p.7749, 2011.
[17] S. W. Lin and C. E. Ho, 2010 International Conference on IEDMS.
[18] K. Zeng and K. N. Tu, Mater. Sci. Eng., R38, p.55, 2002.
[19] T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng., R49, p.1, 2005.
[20 ] C.E. Ho, Ph.D. Thesis (National Central University, Taiwan), June, 2002.
[21] C. E. Ho, S. C. Yang, and C. R. Kao, J. Mater. Sci.: Mater. Electron., vol.18, p.155, 2007.
[22] M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, Appl. Phys. Lett., vol.63, p.15, 1993.
[23] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, J. Yu, and W. K. Choi, JOM, vol.56, p.34, 2004.
[24] S. K. Kang, D. Leonard, D. Y. Shih, L. Gignac, D. W. Henderson, S. Cho, and J. Yu, J. Electron. Mater., vol.35, p.479, 2006.
[25] J. K. Kivilahti, IEEE T. Compon. Pack. B, vol.18, p.326, 1995.
[26] S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, J. Mate. Res., vol.21, p.2436, 2006.
[27] C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, J. Electron. Mater., vol.31, p.584, 2002.
[28] BGA Ball Shear, JESD22-B117, JEDEC Solid State Technology Association, (Edition: October 2006).
[29] Y. C. Chan, M. Y. Chiu, T. H. Chung, and Z. Metallkde vol.93, p.95, 2002.
[30] C. Y. Chou, S. W. Chen, and Y. S. Chang, J. Mater. Res., vol.21, p.1849, 2006.
[31] S. Bader, W. Gust, and H. Hieber, Acta Metall. Mater., vol.43, p.329, 1995.
[32] C. E. Ho*, L. H. Hsu, S. W. Lin, and M. A. Rahman, “Influence of Pd Concentration on the Interfacial Reaction and Mechanical Reliability of the Ni/SnAgCu-xPd System,” Journal of Electronic Materials, in press (DOI: 10.1007/s11664-011-1710-1) (submission: 2011.04.13; accepted: 2011.06.29).
[33] C. Y. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, Appl. Phys. Lett., vol.69, p.4014, 1996.
[34] C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, J. Electron. Mater., vol.35, p.1017, 2006.
[35] H. K. Kim, K. N. Tu, and P. A. Totta, Appl. Phys. Lett., vol.68, p.2204, 1996.
[36] H. K. Kim and K. N. Tu, Phys. Rev. B53, p.16027, 1996.
[37] K. Zeng, Meeting report on the 6th Annual Topical Research Conference on Reliability, Austin, TX, USA, 2003.
[38] C. P. Lin and C. M. Chen, Microelectron. Reliab., (2011), doi:10.1016/j.microrel. 2011.03.007.
[39] A. M. Minor and J. W. Morris Jr., Metall. Mater. Trans., 31A, p.798, 2000.
[40] S. C. Yang, C. C. Chang, M. H. Tsai and C.R. Kao, J. Alloys Compd., vol.499, p.149, 2010.
[41] W. H. Wu, H. L. Chung, B. Z. Chen, and C. E. Ho, J. Electron. Mater., vol.39, p.2653, 2010.
[42] C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, J. Electron. Mater., vol.29, pp.1175-1181, 2000.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文