(3.236.222.124) 您好!臺灣時間:2021/05/11 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:紀葦世
研究生(外文):Wei-Shih Ji
論文名稱:高效能YAG螢光粉之特性量測與模型
論文名稱(外文):The Characteristic Measurement and Model of High-Performance YAG Phosphor
指導教授:張明文張明文引用關係
指導教授(外文):Ming-Wen Chang
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:66
中文關鍵詞:YAG螢光粉模型
外文關鍵詞:YAG phoshporModel
相關次數:
  • 被引用被引用:18
  • 點閱點閱:308
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,為了探討YAG螢光粉封裝成白光LED的光學特性,因此建立YAG螢光粉光學模型,而光學模型可分成散射模型、吸收係數與轉換係數來討論。我們利用蒙地卡羅光追跡法結合米氏散射理論來描述光線於螢光粉膠體中的散射行為,之後藉由藍光與黃光兩次光追跡來描述白光的光學特性,再經由實驗與模擬來分析吸收係數與轉換係數,由於螢光粉對不同波長激發光的吸收能力皆不相同,故引入β參數來提高螢光粉模型在色彩表現預測的準確性,最後藉由實際封裝白光LED來驗證模型準確性。

In this thesis, we build up a precise model to describe the optical characteristic of white LEDs based on YAG phosphor. The modeling parameters include scattering model, absorption coefficient and transfer coefficient. We simulate light scattering in YAG phosphor with Mie scattering based on Monte Carlo ray tracing. The simulation includes the optical behaviors of blue lights and yellow lights. The experimental measurement results are applied to figure out the modeling parameters. Since the absorption and emission of the phosphor is a function of incident wavelength, we introduce a β factor to increase the accuracy of phosphor simulation.

書名頁 i
摘要 iii
ABSTRACT iv
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 LED背景 1
1.2 研究動機 6
1.3 論文大綱 7
第二章 基本原理 8
2.1 引言 8
2.2 LED發光原理 8
2.3 螢光粉發光原理與特性 9
2.4 混光原理 12
第三章 螢光粉模型之建立 15
3.1 引言 15
3.2 螢光粉散射模型 16
3.3 螢光粉的吸收參數 24
3.4 螢光粉的轉換參數 33
第四章 螢光粉特性分析與光學模型驗證 38
4.1 引言 38
4.2 螢光粉模型的分析 38
4.3 不同波長下的激發程度對激發光源的頻寬之影響 45
4.4 螢光粉模型的驗證 51
第五章 結論 59
中英文名詞對照表 63



[1]N. Holonyak, Jr., and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[2]S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, 1997).
[3]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[5]M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
[6]A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, New York, 2002).
[7]E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
[8]J. Y. Tsao, Light Emitting Diodes (LEDs) for General Illumination: An OIDA Technology Roadmap Update 2002 (Washington, D.C.: Optoelectronics Industry Development Association, 2002).
[9]孫慶成,「螢光粉模型與LED光色的控制」,2010 LED固態照明研討論文集,國立中央大學,中壢市,2008年。
[10]Philips Lumileds Lighting Company, http://www.lumileds.com.
[11]T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, US 6686676 B2 (2004).
[12]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[13]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
[14]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,“ IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
[15]R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980B (2006).
[16]N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracing phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol. 202, R60-R62 (2005).
[17]S. J. Duclos, J. Jansma, J. C. Bortscheller, and R. J. Wojnarowski, “Phosphor Coating with Self-adjusting Distance from LED Chip,” United States Patent, US 6635363 B1 (2003).
[18]郭浩中、賴芳儀和郭守義,LED原理與應用,五南出版有限公司,台北市,民國九十八年。
[19]劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華科技圖書公司,台北縣,民國九十七年。
[20]劉如熹和王健源,白光發光二極體製作技術-21世紀人類的新曙光,全華科技圖書公司,台北縣,民國九十四年。
[21]大田 登,色彩工程學,二版,全華科技圖書公司,民國九十五年。
[22]Wikipedia, http://en.wikipedia.org/.
[23]S. A. Schafer, “Quasi-Monte Carlo methods: applications to modeling of light transport in tissue,” Proc. SPIE 2681, 317 (1996).
[24]Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Opt. Express 18, 9398-9412 (2010).
[25]Breault Research Organization, http://www.breault.com/.
[26]C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs”, Opt. Express 16, 20060-20066 (2008).
[27]J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[28]何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,民國九十六年。
[29]D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[30]C. F. Bohren and G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023-1029 (1985).
[31]P. Yang, H. Wei, H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005).
[32]D. L. MacAdam, Spectrophotometry in Color Measurement (Springer-Verlag, 1981), pp. 36-45.
[33]N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” J. Lightw. Technol. 27, 5145-5450 (2009).
[34]I. W. Sudiarta and P. Chýlek, “Mie Scattering by a Spherical Particle in an Absorbing Medium,” Appl. Opt. 41, 3545-3546 (2002).
[35]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[36]Cree EZ700, http://www.cree.com/products/pdf/CPR3DF.pdf.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔