(3.236.222.124) 您好!臺灣時間:2021/05/08 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁復巽
研究生(外文):Fu-Hsuan Liang
論文名稱:單晶太陽電池抗反射結構對模組封裝影響之研究
論文名稱(外文):A study on antireflection coating of monocrystalline silicon solar cell for module encapsulation
指導教授:劉宗平劉宗平引用關係
指導教授(外文):Chung-Ping Liu
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:59
中文關鍵詞:有限差分時域計算法單晶矽太陽電池抗反射結構
外文關鍵詞:FDTDmonocrystalline silicon solar cellantireflection coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單晶矽太陽電池表面上的三角結構及結構上的抗反射膜層,皆有助於增加太陽電池的轉換效率。藉助有限差分時域 (finite difference time domain, FDTD) 法,可計算多層結構的反射與透射。利用電池受光面的量測數據,可修正單晶矽太陽電池反射率的量測值。與模擬反射率的數據相比,其與量測反射率間的誤差為0.33%。接著,採用導納軌跡法,來分析具有抗反射雙層膜的電池模組的性能。另外,利用FDTD所計算的抗反射雙層膜電池模組的反射率,經轉換成短路電流,可用以分析模組的性能。按照抗反射的模擬結果,經以模擬數值實際鍍製雙層抗反射膜結構,發現電池模組的短路電流可提升1.66%。

Both of triangular texture and antireflection (AR) coating on the surface of monocrystalline silicon solar cells are useful for increasing conversion efficiency of solar cells. Using the method of finite difference time domain (FDTD), the reflectance and transmittance of the multi-layer structure can be calculated. By means of the measuring data of illuminated area on the cell surface, the measured reflectance of monocrystalline silicon solar cell can be corrected. Comparison with the simulation data of reflectance, the error between it and the measured reflectance is 0.33%. The performance of AR double-layer on solar module is then analyzed with the method of admittance locus. In addition, the reflectance computed by FDTD of AR double-layer on solar module can be transformed into short-circuit (SC) current to analysis the performance of the module. The SC current of solar module coated AR double-layer based on simulation data is increased by a factor of 1.66%.

書名頁 i
審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
誌謝 vi
目錄 viii
圖錄 x
表錄 xiv
第一章、緒論 1
1.1 太陽電池發展概況 1
1.2 文獻回顧 2
1.3 研究動機與目的 8
第二章、理論背景 9
2.1 有限差分時域計算法(finite-difference time-domain, FDTD) 9
2.2二維直角坐標系中的FDTD 12
2.3 FDTD法分析太陽電池 16
2.4 導納軌跡法 20
2.5 界面與干涉 24
第三章、太陽電池的抗反射 29
3.1 太陽電池表面結構 29
3.2 反射率量測量的修正 31
3.3 太陽電池的多層反射 34
3.4 多層結構的非干涉性反射 36
3.5 FDTD法模擬計算反射率 37
3.6 電池表面週期與非週期結構差異 37
第四章、太陽電池模組的抗反射 39
4.1 太陽電池模組的抗反射層 39
4.2 太陽電池模組的抗反射 39
4.2.1 導納軌跡法 40
4.2.2 FDTD法 45
4.3 太陽電池模組雙層抗反射的結果與討論 49
4.4 FDTD雙層抗反射模組非均勻膜厚分析 53
第五章、結論 55
參考文獻 56


[1] 林明獻,「太陽電池技術入門」,修訂版,全華圖書股份有限公司,民國九十七年.
[2] 蕭睿中、陳建勳、林景熙、徐偉智、葉芳耀,「高效率異質介面矽基太陽電池技術介紹」,工業材料雜誌,281期,112-117頁,2010年5月.
[3] 楊德仁,太陽能電池材料,五南圖書出版股份有限公司,2008年.
[4] A. Lennie, H. Abdullah, S. Shaari and K.Sopian, "Fabrication of Single Layer SiO2 and Si3N4 as Antireflection Coating on Silicon Solar Cell Using Silvaco Software," American Journal of Applied Sciences, vol.6, no.12, pp. 2043-2049, 2009.
[5] S. K. Dhungel, J. Yoo, K. Kim, S. Jung, S. Ghosh, and J. Yi, "Double-Layer Antireflection Coating of MgF2/SiNx for Crystalline Silicon Solar Cells," Journal of the Korean Physical Society, vol. 49, no. 3, pp. 885-889, 2006.
[6] R. B. Pettit, C. J. Brinker and C. S. Ashley, "Sol-Gel Double-Layer Antireflection Coatings For Silicon Solar Cells," Solar Cells, pp. 267-278, 1985.
[7] C. Ballif, J. Dicker, D. Borchert, T. Hofmann, "Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvements and modeling of yearly energy yield gain," Solar Energy Materials & Solar Cells, vol. 82, pp. 331-344, 2004.
[8] M. H. Kang, K. Ryu, A. Upadhyaya, and A. Rohatgi, "Optimization of SiN AR coating for Si solar cells and modules through quantitative assessment of optical and efficiency loss mechanism," Prog. Photovolt: Res. Appl. , 2011.
[9] N. Yamada, L. N. Anh, T. Kambayashi, "Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems, " Solar Energy Materials & Solar Cells, vol.94, pp. 413-419 , 2010.
[10] A. Tavlove, S. C. Hagness, "Computational Electrodynamics: The Finite-Difference Time-Domain Method," Third edition, 2005.
[11] 葛德彪,電磁波時域有限差分方法,西安電子科技大學出版社,2002年.
[12]J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, "Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer", APPLIED PHYSICS LETTERS, vol.94, no.043305, 2009.
[13] S. H. Zaidi, D. S. Ruby, and J. M. Gee, "Characterization of Random Reactive Ion Etched-Textured Silicon Solar Cells," IEEE Transactions On Electron Devices, vol. 48, no. 6, 2001.
[14] 李正中,薄膜光學與鍍膜技術,五版,藝軒圖書出版社,民國九十五年.
[15] W. Chen, S. H. Chen, and C. C. Lee, and C. Y. Peng, "Simulation of the reflected spectrum on solar cell using finite difference time domain with multiple reflection method," 2010 International Conference on Opticsand Photonics in Taiwan, OPT9, 2010.
[16] C. P. Liu, F. H. Liang, C. Y. Peng, and F. M. Lin, " A Loss Analysis of Module Encapsulation Related to Surface Texturing of Solar Cell by FDTD Simulation," 2010 International Conference on Opticsand Photonics in Taiwan, OPT9, 2010.
[17] 石善智,「矽晶太陽模組等效電路及其性質之分析研究」,私立元智大學,光電研究所,碩士論文,2010年.
[18] P. Grunow, and S. Krauter, "Modelling of the encapsulation factors for photovoltaic modules," Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference, 2006.
[19] International Standard, IEC 60904-3, Ed. 2.0, 2008-04, ISBN 2-8318-9705-X, International Electrotechnical Commission (IEC), Geneva, Switzerland, 2008.
[20] B. Curtin, R. Biswas, and V. Dalal, "Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells," Mater. Res. Soc. Symp. Proc. vol. 1245, 2010.
[21] B. Y. Su, Y. K. Su, Z. L. Tseng, M. F. Shih, C. Y. Cheng, T. H. Wu, C. S. Wu, J. J. Yeh, P. Y. Ho, Y. D. Juang, and S. Y. Chu, "Antireflective and Radiation Resistant ZnO Thin Films for the Efficiency Enhancement of GaAs Photovoltaics," Journal of The Electrochemical Society, vol. 158, issue 3, pp. 267-270, 2011.
[22]L. Rose, O. Kesler, Z. Tang, A. Burgess, "Electrochemical testing of solid oxide fuel cells with sol gel impregnated plasma sprayed electrolytes," 10th International Symposium on Solid Oxide Fuel Cells (SOFC-X), vol.7, Issue 1, pp. 623-632, June, 3- 8, 2007 , Nara, Japan.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔