(3.235.236.13) 您好!臺灣時間:2021/05/15 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許博淇
研究生(外文):Po-Chi Hsu
論文名稱:次微米尺度圖案遮罩製作
論文名稱(外文):The fabrication of sub-micron patterned mask
指導教授:陳念波
指導教授(外文):Nien-Po Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:陽極氧化鋁電子束微影次微米遮罩
外文關鍵詞:AAOe-beam lithographysub-micron mask
相關次數:
  • 被引用被引用:3
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
奈米結構由於微影蝕刻科技的進步,因此被廣泛運用於光電半導體元件製作,進一步提升元件性能。開發奈米結構製作技術,已成為提升光電半導體元件特性極為重要研發項目。有鑑於此,本研究致力於次微米尺度圖案遮罩製作,嘗試多種奈米結構製作技術,如:電子束微影技術與陽極氧化鋁遮罩蝕刻技術,在矽基板上製作次微米尺度圖案。雖然電子束微影技術可精確控制圖案尺寸大小與排列之均勻性,但製作速度慢,價格昂貴,很難用於大面積量產使用。因此,我們提出使用陽極氧化鋁當蝕刻遮罩,藉由控制陽極氧化之時間、陽極氧化之溫度、電解液濃度、去氧化阻障層溶液之溫度與時間…等參數,進一步控制陽極氧化鋁遮罩之圖案幾何尺寸。實驗中我們首先使用高純度鋁片製作陽極氧化鋁遮罩,然而受限於浮貼技術,無法大面積化;遂轉而嘗試直接在矽基板上蒸鍍厚度約300 nm之鋁膜,透過陽極氧化處理,亦可以製作出均勻之圖案遮罩。實驗結果顯示,已能將遮罩上之圖案轉移到矽基板上。

Nanostructures have been widely applied to semiconductor devices, because of the advance in the lithographical technology. Its application to the phoeoelectric devices can greatly enhance the devices’ performance. The research on manufacture processes for nanostructures becomes one of the most important driving forces in the advance of photoelectric / photonic area. Our research strives for sub-micron patterned-mask, trying many techniques to manufacture the nanostructure (e.g., e-beam lithography and the technique using anodic aluminum oxide, AAO) to make sub-micron pattern on silicon substrate. Although e-beam lithography can precisely control the size and the uniformity of the pattern, the speed of the process is too slow and difficult to fabricate the pattern in large area. Therefore, we use the AAO to be the etching mask. By controlling the time of anodization, the temperature of anodization, the concentration of the electrolyte, the time of removing barrier layer, and the temperature, we can control the pattern size on the AAO mask. We used an aluminum foil of high purity to make AAO mask at first, but it couldn’t be applied to large area because it was restricted by the floating method. Alternatively, we deposit 300-nm aluminum film directly on the Si substrate to do the AAO process. The result shows that it can fabricate masks with uniform pattern without the limitation of small area. We can transfer the pattern onto the silicon substrate through AAO mask.

書名頁. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
一、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
二、實驗原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 E-beam lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 多孔性陽極氧化鋁. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 陽極氧化鋁成形之化學反應. . . . . . . . . . . . . . . . . . . . 7
2.2.2 多孔性陽極氧化鋁形成機制. . . . . . . . . . . . . . . . . . . . 8
2.2.3 有序的多孔性陽極氧化鋁. . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 形成陽極氧化鋁遮罩之製程. . . . . . . . . . . . . . . . . . . . 15
2.2.5 影響陽極氧化鋁形成之因素. . . . . . . . . . . . . . . . . . . . 16
三、實驗設備與量測儀器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 E-Beam lithography搭配感應耦合電漿蝕刻. . . . . . . . . . . . 18
3.1.2 陽極氧化鋁製程搭配反應式離子蝕刻. . . . . . . . . . . . . . . . 19
3.2 量測儀器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) . . . . 21
3.2.2 原子力顯微鏡(Atomic Force Microscopy, AFM) . . . . . . . . . 22
四、實驗步驟. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 電子束微影方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 鋁箔式陽極氧化鋁法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 薄膜式陽極氧化鋁法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
五、實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 電子束微影製作次微米圖案. . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 鋁片製作陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.1 退火前後鋁箔表面粗糙度比較. . . . . . . . . . . . . . . . . . . 32
5.2.2 未經過陽極氧化之鋁片. . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 鋁箔式陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 剝離後之陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . . . . . . 38
5.2.5 經退火製程之陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . . . 39
5.2.6 浮接法於氧化鋁遮罩與矽晶圓之黏合. . . . . . . . . . . . . . . . 40
5.3 鋁膜式陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 退火前後鋁膜表面粗糙度比較. . . . . . . . . . . . . . . . . . . 41
5.3.2 矽基板上直接形成陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . 42
5.3.3 經退火製程之陽極氧化鋁遮罩. . . . . . . . . . . . . . . . . . . 44
5.3.4 經不同退火溫度製作之陽極氧化鋁遮罩. . . . . . . . . . . . . . 48
5.3.5 不同退火時間製作之陽極氧化鋁遮罩. . . . . . . . . . . . . . . . 51
5.3.6 磷酸溶液之擴孔及去除阻障層. . . . . . . . . . . . . . . . . . . 52
5.3.7 圖案轉移及移除遮罩. . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.8 Sputter 濺鍍鋁膜及E-gun 蒸鍍鋁膜進行陽極氧化製程之比較. . 55
六、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
自傳. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

[1] O. Painter, A. Husain, A. Scherer, J. O’Brien, I. Kim, and P. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in In-
GaAsP,” J. Lightwave Technol., vol. 17, pp. 2082–2088, 1999.
[2] A. Chutinan and S. John, “Diffractionless flow of light in two- and threedimensional photonic band gap heterostructures:theory, design rules, and simulations,”
Phys. Rev. E, vol. 71, 2005.
[3] M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal surface,” Science, vol. 262, pp. 218–220, 1993.
[4] D. M. Eigler and E. K. Schweizer, “Positioning single atoms with a scanning tunnelling microscope,” Nature, vol. 344, pp. 524–526, 1990.
[5] W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced
surface area,” Sensors and Actuators B: Chemical, vol. 131, pp. 279–284, 2008.
[6] http://www.nikon.co.jp/main/eng/index.htm.
[7] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a twostep replication of honeycomb structures of anodic alumina,” Science, vol. 268,
pp. 1466–1468, 1995.
[8] H. Masuda, F. Hasegwa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution,” J. Electrochem. Soc., vol. 144,
pp. L127–L130, 1997.
[9] H. Masuda and H. Yamada, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett, vol. 71, pp. 2770–2772, 1997.
[10] O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., vol. 72, pp. 1173 –1175, 1998.
[11] A. P. Li and F. M?ller, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84,pp. 6023–6026, 1998.
[12] F. Li, L. Zhang, and R. M. Metzge, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater., vol. 10, pp. 2470–2480, 1998.
[13] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Films, vol. 297, pp. 192–201, 1997.
[14] N. Taşaltın, S. ?zt?rk, N. Kılın?, H. Y?zer, and Z. Z. ?zt?rk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions,” Appl. Phys. A, vol. 95, pp. 781–787, 2009.
[15] H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, “Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al,” J.
Electrochem. Soc., vol. 148, pp. B152–B156, 2001.
[16] H. Masuda, M. Yotsuya, M. Asano, and K. Nishio, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett., vol. 78, pp. 826–828, 2001.
[17] F. Zacharatos, V. Gianneta, and A. G. Nassiopoulou, “Highly ordered hexagonally arranged sub-200 nm diameter vertical cylindrical pores on p-type Si using non-lithographic pre-patterning of the Si substrate,” Phys. Status Solidi A, vol. 206, pp. 1286–1289, 2009.
[18] C. Y. Liu, A. Datta, and Y. L. Wanga, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett., vol. 78, pp. 120–122, 2001.
[19] J. Hong, K. Kim, J. Heo, and I. Chung, “Formation of square matrix pores on Al film utilizing focused ion beam milled indent,” Thin Solid Films, vol. 518, pp. 4572–4577, 2010.
[20] H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Jpn. J. Appl. Phys., vol. 35, pp. L126–L129, 1996.
[21] Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett., vol. 78, no. 2, pp. 142–143, 2001.
[22] J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of
nanostructures: Nonlithographic formation by anodic membrane template,” J. Appl. Phys., vol. 91, pp. 2544–2546, 2002.
[23] S. Oihane, Echave, F. Javier, Odriozola, J. Antonio, and M. Mario, “Aluminum anodization in oxalic acid: Controlling the texture of Al2O3/Al monoliths for
catalytic aplications,” Ind. Eng. Chem. Res., vol. 50, pp. 2117–2125, 2011.
[24] W. Lee, “The anodization of aluminum for nanotechnology applications,” J. Minerals Met. Mater. Soc., vol. 62, pp. 57–63, 2010. 10.1007/s11837-010-0088-
5.
[25] M. Hu, R. Yu, J. L. MacManus-Driscoll, and A. P. Robinson, “Large-area silica nanotubes with controllable geometry on silicon substrates,” Appl. Surf. Sci., vol. 255, pp. 3563–3566, 2009.
[26] 陳冠舟, “利用電子束微影製作奈米結構,” Master’s thesis, 國立東華大學應用物理研究所, 2005.
[27] 游雋弘, “GHz 級薄膜型塊體聲波共振器的研製與特性探討,” Master’s thesis, 國立成功大學電機工程研究所, 2002.
[28] 李景弘, “藉由透明氧化物層對GaN基LED光取出改善之研究,” Master’s thesis, 國立成功大學電機工程學系微電子工程研究所, 2007.
[29] http://web.nchu.edu.tw/~dsw/book/41-3.doc.
[30] A.-P. Li, F. M?ller, A. Birner, K. Nielsch, and U. G?sele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Adv. Mater., vol. 11, pp. 483–487, 1999.
[31] 楊昆霖, “大面積規則陽極氧化鋁孔洞之研製與相關運用,” Master’s thesis, 國立中山大學光電工程研究所, 2007.
[32] http://rsb.info.nih.gov/ij/.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top