跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高名璿
研究生(外文):Ming-Hsuan Kao
論文名稱:單晶矽太陽電池表面結構之優化
論文名稱(外文):Optimal Surface Nano Structure in Crystalline Silicon Solar Cells
指導教授:賴芳儀賴芳儀引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:太陽電池單晶矽奈米結構
外文關鍵詞:solar cellscrystalline siliconnano structure
相關次數:
  • 被引用被引用:3
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用簡易、低成本的旋轉塗佈(Spin-coating)方式將奈米小球(Polystyrene)以自我組裝方式(Self assembly)在矽基板上形成最密堆積的遮罩,再以乾蝕刻技術製作不同形貌之奈米結構化陣列。本實驗主要目的是以模擬及實做方式,探討蛋形、梯形、錐形奈米結構之抗反射層特性。在模擬方面,首先以Matlab進行等效反射率之計算,接著進行光照射於奈米結構模擬分析,我們採用了RSoft套裝軟體裡的Diffraction Mode來進行模擬。Diffraction Mode是利用廣為大家所熟知的嚴格耦合波分析法(RCWA)技術,可模擬奈米結構之反射率,將之與太陽光頻譜作積分,可得到最佳化的奈米結構。製程方面,我們除了以RIE乾式蝕刻製作不同形貌的次波長結構,並使用缺陷層移除(DRE)溶液將RIE過程中形成的表面缺陷移除。同時,我們量測各種不同製程參數下反射率與生命期,並將量測結果輸入APSYS模擬軟體進行光電特性的計算,以分析其背後之物理機制。根據模擬與製程的結果,我們發現以RIE蝕刻出梯形結構後,若再輔以DRE進行表面缺陷移除,其反射率將會呈現相當幅度的下降,並且生命期會因缺陷的移除而提升,模擬結果顯示其效率達15.51%,與表面平坦矽太陽電池相較,其效率增加了16.53%,同時具有優異的抗反射效果卻又不至於在電性表現上犧牲太大,適合實際應用於太陽能電池元件之上。

We successfully form self-assemble ,close-packed and monolayer polystyrene nanospheres on the surface of silicon wafers, by employing simpley and cost-effectively spin-coating method. These nanospheres are used as sacrificial etching masks for reactive ion etching (RIE) process to fabricate different profile nano-arrays characterized as broadband antireflective and effective carrier collection structures for enhancing light harvesting of crystalline Si-based solar cells.
Conventional antireflection layers were usually fabricated by depositing a single or multiple layers with restricted thickness and material selection on the silicon solar cells. However, the conventional method exhibited several drawbacks : 1. The stack of layers serve narrow-band antireflective properties. 2. Thermal mismatch and instability of the thin-film stacks have been the major obstacles to achieve broadband antireflection coatings. 3. Selection of materials with proper dielectric constants is difficult.
According to the previous studies, the surface nano-arrays were reported to exhibit better broadband antireflective characteristics than the multiple antireflective layers, it opens up exciting opportunities for photovoltaic devices to further improve performance.
In this project, we intend to demonstrate a high performance, large area Si solar cells by integrateing the antireflective nanostructure,
We utilized rigorous coupled wave analysis (RCWA) method to calculate the reflectance of the nanostructured solar cells and desire to further optimize the light harvesting of the cells. In addition, implementation of the nanostructure will be conducted on silicon-based solar cells to reduce the broadband reflectance. After the RIE process, the samples with trapezoid structure were treated by dipping in HF:HNO3:H2O (2:48:50) solution to remove the damaged layer. This step is called defect removal etching (DRE). Not only the reflectance were reduced but also the lifetime was increased after DRE process. The data of lifetime and reflectance were input to APSYS simulator to calculate the short circuit current, open circuit voltage, and power conversion effeciency. The effeciency of trapezoid structures with DRE treatment achieve 15.51%, which shows an 16.53% compared to flat Si solar cells. We believe the trapezoid structures with DRE treatment are excellent anti-reflectance structures, which are promising candidates to realize the low-cost, high-efficiency solar cells.

摘要................................................................i
ABSTRACT.........................................................ii
誌謝.................................. .............................iv
目錄................................................................v
表目錄................................... .........................vii
圖目錄................................... .........................viii
第一章 太陽電池工作原理與介紹.......................................1
1.1太陽電池介紹................................................1
1.2 太陽電池原理................................................3
1.2.1 太陽光譜..............................................3
1.2.2太陽電池轉換原理......................................5
1.2.3 太陽電池特性與效率...................................16
1.3 應用表面次波長結構化於太陽電池之文獻回顧...................18
第二章 單晶矽太陽電池表面結構化之模擬..............................27
第三章 單晶矽太陽電池表面結構化之製程..............................35
3.1 實驗流程...................................................35
3.2旋轉塗佈法 (Spin coating method)............................35
3.3乾式蝕刻 (Dry etching)......................................36
3.3.1 反應式離子蝕刻 (Reactive Ion Etching).................36
3.3.2 去除奈米球...........................................37
3.4 表面缺陷層移除(Damage Removal Etching).....................37
3.5 分析方法與量測儀器.........................................38
3.5.1 生命期量測 (lifetime)................................38
3.5.2 掃描式電子顯微鏡 (FE-SEM)............................39
3.8.3 反射率量測...........................................39
3.8.4 外部量子效應量測.....................................40
3.8.5 電流-電壓量測 (I-V).................................41
第四章 實驗結果....................................................42
4.1 乾式蝕刻測試...............................................42
4.2 表面缺陷層移除測試.........................................51
4.3反射率與生命期比較結果.....................................54
4.4將實驗結果以模擬軟體APSYS進行分析.........................57
第五章 總結....... ................................................60
第六章 參考文獻....................................................61


1.M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation, Springer- Verlag, Berlin, 1-3, (2003)
2.PVCDROM, http://pveducation.org/pvcdrom
3.K. Rajkanan, R. Singh, and J. Shewchun, “Absorption Coefficient of Silicon for Solar Cell Calculations,” Solid-State Electronics, (1979)
4.黃惠良、曾百亨主編:太陽電池。五南,(2008)
5.Donald A. Neamen, Semiconductor Physics And Devices, McGraw-Hill Science, (2002)
6.W.H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8, 584-586, (1983)
7.J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075-3083, (2002)
8.D. Poitras, J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43, 1286, (2004)
9.P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology, 8, 53, (1997)
10.D. S. Hobbs, R. D. Macleod, J. R. Riccobono, “Update on the development of surface relief micro-structures,” Proc. of SPIE, 6545, 65450Y, (2007)
11.J. Zhu, Z. Yu, G. F. Burkhard, C. –M. Hsu, S. T. Connor, Y. Xu, Qi Wang, M. McGehee, S. Fan, Yi Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett., 9, 279-281, (2010)
12.C. –M. Hsu, S. T. Connor, M. X. Tang, and Yi Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett., 93, 133109, (2008)
13.Z.Z. Gu, Akira Fujishima and Osamu Sato, “Fabrication of High-Quality Opal Films with Controllable Thickness,” Chem. Mat., 14, 760-765, (2002)
14.J. Zhu, C. –M. Hsu, Z. Yu, S. Fan, and Yi Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett., 10, 1979-1984, (2010)
15.Y. M. Song, J. S. Yu, and Y. T. Lee, "Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement," Opt. Lett., 35, 276-278, (2010)
16.Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, "Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer," Opt. Lett., 34, 1702, (2009)
17.J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, "A strong antireflective solar cell prepared by tapering silicon nanowires", Opt. Express, 18, A286-A292, (2010)
18.K. Q. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, “Uniform, axial-orientation alignment of onedimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. Engl. 44(18), 2737–2742 (2005)
19.S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, "Fast and Scalable Printing of Large Area Monolayer Nanoparticles for Nanotexturing Applications," Nano Lett., 10, 2989-2994, (2010)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top