(3.236.100.86) 您好!臺灣時間:2021/05/06 14:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李朝源
研究生(外文):Chau-Yuan Lee
論文名稱:改良式帝國主義競爭演算法
論文名稱(外文):Improved Imperialist Competitive Algorithm
指導教授:劉俞志劉俞志引用關係
指導教授(外文):Yu-Chih Liu
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:51
中文關鍵詞:最佳化基因演算法粒子群最佳化蟻群最佳化差異進化演算法帝國主義競爭演算法
外文關鍵詞:OptimizationGenetic AlgorithmParticle Swarm OptimizationAnt Colony OptimizationDifferential Evolution AlgorithmImperialist Competitive Algorithm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1269
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
近年來有許多種類之最佳化方法,其中較為知名的有基因演算法(Genetic Algorithm, GA)、粒子群最佳化(Particle Swarm Optimization, PSO)及蟻群最佳化演算法(Ant Colony Optimization, ACO)、差異進化演算法(Differential Evolution Algorithm, DEA),這些演算法都是觀察自然界生物活動之習性,利用電腦模擬而成之最佳化演算法;而近年來有研究學者觀察人類歷史中帝國與殖民地之資源競爭現象,並加以實作而成帝國主義競爭演算法(Imperialist Competitive Algorithm, ICA),其效能表現也相當優越;而本研究主要為改良帝國主義競爭演算法殖民地之移動方式之缺陷,經過實驗測試後,改良後之帝國主義競爭演算法能夠獲得進一步的效能提升。

Many nature-inspired optimization methods, such as Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization and Differential Evolution Algorithm have received much attention for the past few decades. These algorithms are based on computer simulation of biological activity. Recently, a new nature-inspired optimization method, called Imperialist Competition Algorithm (ICA), was proposed. ICA is based on the resource competition among colonial empires. This study modifies how colonies move in ICA to reduce the chance of falling into local optimum. Our experimental results show that the proposed method outperforms ICA.

目 錄
書名頁............................................... I
論文口試委員審定書..................................... II
授權書.............................................. III
中文摘要................................................ IV
英文摘要............................................ V
誌謝................................................ VI
目 錄........................................... VII
表 目 錄.......................................... IX
圖 目 錄.......................................... XI
第一章 緒論........................................ 1
1.1 研究背景........................................ 1
1.2 研究目的........................................ 2
1.3 論文架構........................................ 2
第二章 文獻探討..................................... 4
2.1 基因演算法...................................... 4
2.2 粒子群最佳化演算法................................ 9
2.3 差異進化演算法.................................. 14
2.4 帝國主義競爭演算法............................... 16
2.4.1 同化作用..................................... 18
2.4.2 競爭作用..................................... 20
2.4.3 ICA之應用範疇.................................. 21
第三章 研究方法.................................... 24
3.1 改良式帝國主義競爭演算法.......................... 24
3.2 帝國主義競爭演算法與差異進化演算法之結合............. 31
第四章 實驗結果.................................... 34
4.1 實驗目標函式.................................... 34
4.2 實驗參數設置.................................... 35
4.3 實驗設備....................................... 35
4.4 改良式ICA與DEA結合ICA實驗結果.................... 36
4.5 綜合實驗結果比較................................ 42
第五章 結論與未來展望............................... 45
參考文獻............................................ 48

[1]Ashkan, M. J., Gargari, E. A. and Lucas, C., Vehicle Fuzzy Controller Design Using Imperialist Competitive Algorithm, Second First Iranian Joint Congress on Fuzzy and Intelligent Systems, Tehran, Iran, 2008.

[2]Abdechiri, M., Faez, K. and Bahrami, H., Adaptive Imperialist Competitive Algorithm (AICA), 2010 9th IEEE International Conference on Cognitive Informatics (ICCI), pp. 940-945, 2010.

[3] Arthur, D. and Vassilvitskii, S., K-means++: The Advantages of Careful Seeding, Proceeding SODA ’07 Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027-1035, 2007.

[4]Bahrami, H., Faez, K. and Abdechiri, M., Imperialist Competitive Algorithm Using Chaos Theory for Optimization (CICA), 2010 12th International Conference on Computer Modeling and Simulation, pp. 98-103, 2010.

[5]Bergh, F. V. D. and Engelbrecht, A. P., A Cooperative Approach to Particle Swarm Optimization, IEEE Transactions on Evolutionary Computation, 8 (3), 2004.

[6]Chen, R. M., Lo, S. T., Wu, C. L. and Lin, T. H., An Effective Ant Colony Optimization – Based Algorithm for Flow Shop Scheduling, IEEE Conference on Soft Computing in Industrial Applications, pp. 101-106, 2008.

[7]Dorigo, M., Birattari, M. and Stutzle, T., Ant Colony Optimization, IEEE Computational Intelligence Magazine, 1 (4), pp.28-39, 2006.

[8]Das, S., Abraham, A. and Konar, A., Differential Evolution Algorithm: Foundations and Perspectives, Studies in Computational Intelligence, 178, pp. 63-110, 2009.

[9]Elbeltagi, E., Hegazy, T. and Grierson, D., Comparison Among Five Evolutionary-Based Optimization Algortihms, 19, pp. 43-53, 2005.

[10]Herrera, F., Lozano, M. and Sanchez, A. M., A Taxonomy for the Crossover Operator for Real-Coded Genetic Algorithms: An Experimental Study, International Journal of Intelligent Systems, 18, pp. 309-338, 2003.

[11]Lu, L., Luo, Q., Liu, J. Y. and Long, C., An Improved Particle Swarm Optimization Algorithm, Algorithm Granular Computing 2008 IEEE International Conference, pp. 486-490, 2008.

[12]Gargari, E. A. and Lucas, C., Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition, IEEE Congress on Evolutionary Computation (CEC), pp. 4661-4667, 2007.

[13]Gargari, E. A., Hashemzadeh, F., Rajabioun, R. and Lucas, C., Colonial Competitive Algorithm: A Novel Approach for PID Controller Design in MIMO Distillation Column Process, International Journal of Intelligent Computing and Cybernetics, 1 (3), pp.337-355, 2008.

[14]Goldberg, D. E. and Holland, J. H., Genetic Algorithms and Machine Learning, Machine Learning, 3 (2-3), pp. 95-99, 1988.

[15]Holland, J. H., Adaptation in Natural and Artificial Systems, MIT press, 1992.

[16]Kennedy, J. and Eberhart, R., Particle Swarm Optimization, IEEE International Conference on Neural Networks 1995 Proceedings, 4, pp. 1942-1948, 1995.

[17]Krink, T., Vesterstrom, J. S. and Riget, J., Particle Swarm Optimization with Spatial Particle Extension, Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1474-1479, 2002.

[18]Khorani, A.V., Razavi, B. F. and Ghoncheh, C. A., A new Hybrid Evolutionary Algorithm Based on ICA and GA: Recursive-ICA-GA, The 2010 International Conference on Artificial Intelligence, pp. 131-140, 2010.

[19]Morteza, B., Farshid, J. H. and Hamid, S. S., Metaheuristic Algorithms for Optimization of Regulator Parameters in the Variable Speed DC Motor Drives, 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), pp. 230-234, 2010.

[20]Mitchell, M., An Introduction to Genetic Algorithms, MIT press, 1992..

[21]Ong, Y. S. and Keane, A. J., Meta-Lamarckian Learning in Memetic Algorithms, IEEE Transactions on Evolutionary Computation, 8 (2), pp. 99-110, 2004.

[22]Poli, R., Kennedy, J. and Blackwell, T., Particle Swarm Optimization An Overview, Swarm Intelligence, 1 (1), pp. 33-57, 2007.

[23]Shi, Y. and Eberhart, R. C., Empirical Study of Particle Swarm Optimization, Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), 1999.

[24]Suganthan, P. N., Particle Swarm Optimiser with Neighbourhood Operator, Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), 1999.

[25]Storn, R. and Price, K., Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Space, Journal of Global Optimization, 11 (4), pp. 341-359, 1997.

[26]Ursem, K. R., Diversity-Guided Evolutionary Algorithms, Parallel Problem Solving from Nature-PPSN VII, pp. 462-471, 2002.

[27]William, J. D. and Jackson, J. S., The Essential World History 6th Ed., Cengage Learning, 2010.
[28]Whitley, D., Gordon, V. S. and Mathias, K., Lamarckian Evolution, The Baldwin Effect and Function Optimization, Parallel Problem Solving from Nature-PPSN III, pp. 5-15, 1994.
[29]Xie, X. F., Zhang, W. J. and Yang, Z. L., A Dissipative Particle Swarm Optimization, Proceedings of the 2002 Congress on Evolutionary Computation (CEC‘02), 1456-1461, 2002.

[30]Yan, T. S., An Improved Genetic Algorithm and Its Blending Application with Neural Network, 2010 2nd International Workshop on Intelligent Systems and Applications(ISA), pp. 1-4, 2010.

[31]Yang, B., Chen, Y. and Zhao, Z., Survey on Applications of Particle Swarm Optimization in Electric Power Systems, IEEE International Conference on Control and Automation (ICCA 2007), pp. 481-486, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔